Agritrop
Accueil

Semantically-informed domain adaptation for named entity recognition

Borovikova Mariya, Ferré Arnaud, Bossy Robert, Roche Mathieu, Nédellec Claire. 2024. Semantically-informed domain adaptation for named entity recognition. In : Foundations of intelligent systems: 27th International Symposium, ISMIS 2024, Poitiers, France, June 17-19, 2024, Proceedings. Appice Annalisa (ed.), Azzag Hanane (ed.), Hacid Mohand-Said (ed.), Hadjali Allel (ed.), Ras Zbigniew (ed.). Cham : Springer, 55-64. (Lecture Notes in Artificial Intelligence, 14670) ISBN 978-3-031-62699-9 International Symposium on Methodologies for Intelligent Systems (ISMIS 2024). 27, Poitiers, France, 17 Juin 2024/19 Juin 2024.

Communication avec actes
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Borovikova_et_al_ISMIS2024.pdf

Télécharger (999kB) | Demander une copie

Résumé : Named Entity Recognition (NER) is an important task in Natural Language Processing that involves identifying entities in unstructured text. State-of-the-art NER methods often require extensive manual labeling for training. To bridge this gap, this paper introduces a domain adaptation technique that leverages semantic information about entity types using Sentence-BERT embeddings of their textual descriptions. We conduct experiments across various datasets from both general and biological domains, evaluating our approach in standard and zero-shot settings. Our experiences demonstrate the effectiveness of our method, which outperforms existing zero-shot techniques on certain datasets. Our findings underscore the importance of accurate semantic representations for entity types. This paper contributes to the advancement of zero-shot domain adaptation for NER and opens avenues for future research in improving NER systems' adaptability and performance across diverse domains.

Mots-clés libres : Natural Language Processing, Language Model, Named entity recognition, Domain adaptation

Agences de financement hors UE : Agence Nationale de la Recherche

Projets sur financement : (FRA) Building epidemiological surveillance and prophylaxis with observations both near and distant

Auteurs et affiliations

  • Borovikova Mariya, Université Paris-Saclay (FRA)
  • Ferré Arnaud, Université Paris-Saclay (FRA)
  • Bossy Robert, INRAE (FRA)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
  • Nédellec Claire, INRAE (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/609693/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-06-20 ]