Musslin Lola, Bazin Alexandre, Huchard Marianne, Martin Pierre, Poncelet Pascal, Raveneau Vincent, Sallaberry Arnaud. 2024. FCAvizIR. s.l. : s.n., 1 p.
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. FCAvizIR-abstract.pdf Télécharger (68kB) | Prévisualisation |
Url - autres données associées : https://doi.org/10.18167/DVN1/BWCC71
Résumé : Implication is a core notion of Formal Concept Analysis and its extensions. It provides information about the regularities present in the data. When one considers a relational data set of real-size, implications are numerous and their formulation, which combines primitive and relational attributes computed using Relational Concept Analysis framework, is complex. For an expert wishing to answer a question based on such a corpus of implications, having a smart exploration strategy is crucial. FCAvizIR is a web platform which implements a visual approach for such exploration. Comprised of three interactive and coordinated views and a toolbox, FCAvizIR has been designed to explore corpora of implication rules following Schneiderman's famous mantra "overview first, zoom and filter, then details on demand". It enables metrics filtering, e.g. fixing a minimum and a maximum support value, and the multiple selection of relations and attributes in the premise and in the conclusion to identify the corresponding subset of implications presented as a list and Euler diagrams.
Mots-clés libres : Formal concept analysis, Data visualization, Artificial intelligence
Agences de financement hors UE : Agence Nationale de la Recherche
Projets sur financement : (FRA) Analyse Formelle de Concepts : un outil intelligent pour l'analyse de données complexes
Auteurs et affiliations
- Musslin Lola, Université de Montpellier (FRA)
- Bazin Alexandre, Université de Montpellier (FRA)
- Huchard Marianne, Université de Montpellier (FRA)
- Martin Pierre, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0002-4874-5795
- Poncelet Pascal, Université de Montpellier (FRA)
- Raveneau Vincent, CNRS (FRA)
- Sallaberry Arnaud, UM3 (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/610646/)
[ Page générée et mise en cache le 2024-10-23 ]