Agritrop
Accueil

Improving field-scale crop actual evapotranspiration monitoring with Sentinel-3, Sentinel-2, and Landsat data fusion

Guzinski Radoslaw, Nieto Héctor, Ramo Sánchez Rubén, Sánchez Juan Manuel, Jomaa Ihab, Zitouna-Chebbi Rim, Roupsard Olivier, López-Urrea Ramón. 2023. Improving field-scale crop actual evapotranspiration monitoring with Sentinel-3, Sentinel-2, and Landsat data fusion. International Journal of Applied Earth Observation and Geoinformation, 125:103587, 17 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
611137.pdf

Télécharger (6MB) | Prévisualisation

Résumé : One of the primary applications of satellite Land Surface Temperature (LST) observations lies in their utilization for modeling of actual evapotranspiration (ET) in agricultural crops, with the primary goals of monitoring and enhancing irrigation practices and improving crop water use productivity, as stipulated by Sustainable Development Goal (SDG) indicator 6.4.1. Evapotranspiration is a complex and dynamic process, both temporally and spatially, necessitating LST observations with high spatio-temporal resolution. Presently, none of the existing spaceborne thermal sensors can provide quasi-daily field-scale LST observations, prompting the development of methods for data fusion (thermal sharpening) of observations from various shortwave and thermal sensors to meet this spatio-temporal requirement. Previous research has demonstrated the effectiveness of combining shortwave-multispectral Sentinel-2 observations with thermal-infrared Sentinel-3 observations to derive daily, field-scale LST and ET estimates. However, these studies also highlighted limitations in capturing the distinct thermal contrast between cooler LST in irrigated agricultural areas and the hotter, adjacent dry regions. In this study, we aim to address this limitation by incorporating information on thermal spatial variability observed by Landsat satellites into the data fusion process, without being constrained by infrequent or cloudy Landsat thermal observations and while retaining the longwave radiance emission captured by the Sentinel-3 thermal sensor at its native resolution. Two approaches are evaluated, both individually and as a complementary combination, and validated against in situ LST measurements. The best performing approach, which leads to reduction in root mean square error of up to 1.5 K when compared to previous research, is subsequently used to estimate parcel-level actual evapotranspiration. The ET modeling process has also undergone various improvements regarding the gap-filling of input and output data, input datasets and code implementation. The resulting ET is validated using lysimeters and eddy covariance towers in Spain, Lebanon, Tunisia, and Senegal resulting in minimal overall bias (systematic underestimation of less than 0.07 mm/day) and a low root mean square error (down to 0.84 mm/day) when using fully global input datasets. The enhanced LST sharpening methodology is sensor agnostic and should remain relevant for the upcoming thermal missions while the accuracy of the modeled ET fluxes is encouraging for further utilization of observations from Sentinel satellites, and other Copernicus data, for monitoring SDG indicator 6.4.1.

Mots-clés Agrovoc : Landsat, Observation satellitaire, évapotranspiration, développement durable, utilisation des terres

Mots-clés géographiques Agrovoc : Sénégal, Liban, Tunisie

Mots-clés libres : Irrigated agriculture, Remote Sensing, Surface energy balance, Land surface temperature

Agences de financement européennes : European Regional Development Fund, European Commission

Agences de financement hors UE : European Space Agency, Agropolis Fondation, Total Foundation

Programme de financement européen : H2020

Projets sur financement : (FRA) ET4FAO, (FRA) Sat-ET4Drought, (EU) Synergistic use and protection of natural resources for rural livelihoods through systematic integration of crops, shrubs and livestock in the Sahel

Auteurs et affiliations

  • Guzinski Radoslaw, DHI (DNK) - auteur correspondant
  • Nieto Héctor, CSIC (ESP)
  • Ramo Sánchez Rubén
  • Sánchez Juan Manuel
  • Jomaa Ihab, Lebanese Agricultural Research Institute (LBN)
  • Zitouna-Chebbi Rim, INRGREF (TUN)
  • Roupsard Olivier, CIRAD-PERSYST-UMR Eco&Sols (SEN) ORCID: 0000-0002-1319-142X
  • López-Urrea Ramón, CSIC (ESP)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/611137/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]