Trevennec Carlène, Pompidor Pierre, Bououda Samira, Rabatel Julien, Roche Mathieu.
2024. MUST-AI: Multisource surveillance tool - Avian influenza.
In : 28th International Conference on Knowledge Based and Intelligent information and Engineering Systems (KES 2024). Toro C. (ed.), Rios S.A. (ed.), Howkett R.J. (ed.), Jain L.C. (ed.)
|
Version post-print
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. 1-s2.0-S1877050924027868-main.pdf Télécharger (1MB) | Prévisualisation |
|
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. MUST_AI_Multisource_Surveillance_Tool_Avian_Influenza_with_Appendix.pdf Télécharger (1MB) | Demander une copie |
Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/Y1J9XK
Résumé : The multisource surveillance tool (MUST) is a platform for collecting, gathering, and visualizing different sources of information related to health events and highly pathogenic avian influenza in mammals (HPAIM). MUST-AI constitutes the first part of the MUST tool, which centralizes health information relating to cases of HPAIM since January 1, 2021, and comes from 3 different notification sources, an official notification source confirmed by public health institutions (i.e., WAHIS) and two other alternative unofficial sources that collect events from online media (PADI-web) and expert networks (ProMED). Owing to the use of natural language processing (NLP) algorithms, HPAIM events are represented on an interactive map associated with a graph that represents their distribution over a given time interval. This paper presents new tools and approaches for data fusion and experiments for selecting data to integrate into MUST that are related to HPAIM events.
Mots-clés libres : Epidemic intelligence, Event-based surveillance, Data fusion, Highly pathogenic avian influenza, One Health
Agences de financement européennes : European Commission
Programme de financement européen : H2020
Projets sur financement : (EU) MOnitoring Outbreak events for Disease surveillance in a data science context
Auteurs et affiliations
- Trevennec Carlène, INRAE (FRA)
- Pompidor Pierre, Université de Montpellier (FRA)
- Bououda Samira, Université de Montpellier (FRA)
- Rabatel Julien
- Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
Source : Cirad-Agritrop (https://agritrop.cirad.fr/611241/)
[ Page générée et mise en cache le 2024-12-09 ]