Agritrop
Accueil

MUST-AI: Multisource surveillance tool - Avian influenza

Trevennec Carlène, Pompidor Pierre, Bououda Samira, Rabatel Julien, Roche Mathieu. 2024. MUST-AI: Multisource surveillance tool - Avian influenza. In : 28th International Conference on Knowledge Based and Intelligent information and Engineering Systems (KES 2024). Toro C. (ed.), Rios S.A. (ed.), Howkett R.J. (ed.), Jain L.C. (ed.). Amsterdam : Elsevier, 3034-3043. (Procedia Computer Science, 246) International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES 2024). 28, Séville, Espagne, 11 Septembre 2024/13 Septembre 2024.

Communication avec actes
[img]
Prévisualisation
Version post-print - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
1-s2.0-S1877050924027868-main.pdf

Télécharger (1MB) | Prévisualisation
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
MUST_AI_Multisource_Surveillance_Tool_Avian_Influenza_with_Appendix.pdf

Télécharger (1MB) | Demander une copie

Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/Y1J9XK

Résumé : The multisource surveillance tool (MUST) is a platform for collecting, gathering, and visualizing different sources of information related to health events and highly pathogenic avian influenza in mammals (HPAIM). MUST-AI constitutes the first part of the MUST tool, which centralizes health information relating to cases of HPAIM since January 1, 2021, and comes from 3 different notification sources, an official notification source confirmed by public health institutions (i.e., WAHIS) and two other alternative unofficial sources that collect events from online media (PADI-web) and expert networks (ProMED). Owing to the use of natural language processing (NLP) algorithms, HPAIM events are represented on an interactive map associated with a graph that represents their distribution over a given time interval. This paper presents new tools and approaches for data fusion and experiments for selecting data to integrate into MUST that are related to HPAIM events.

Mots-clés libres : Epidemic intelligence, Event-based surveillance, Data fusion, Highly pathogenic avian influenza, One Health

Agences de financement européennes : European Commission

Programme de financement européen : H2020

Projets sur financement : (EU) MOnitoring Outbreak events for Disease surveillance in a data science context

Auteurs et affiliations

  • Trevennec Carlène, INRAE (FRA)
  • Pompidor Pierre, Université de Montpellier (FRA)
  • Bououda Samira, Université de Montpellier (FRA)
  • Rabatel Julien
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568

Source : Cirad-Agritrop (https://agritrop.cirad.fr/611241/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-09 ]