Agritrop
Accueil

Evaluation of spatial models in the estimation of genetic parameters for incidence of frosty pod rot and production in Theobroma cacao full-sib family trials

Solís Bonilla José Luis, Denis Marie, Vanderlei Lopes Uilson, Martínez Valencia Biaani Beeu, Chia Wong Julio Alfonso, Peres Gramacho Karina. 2024. Evaluation of spatial models in the estimation of genetic parameters for incidence of frosty pod rot and production in Theobroma cacao full-sib family trials. Tree Genetics and Genomes, 20:46, 16 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
20241218.pdf

Télécharger (1MB) | Demander une copie

Résumé : In this study, we performed spatial analyses to estimate genetic parameters for the incidence of frosty pod rot and yield in two progeny trials of the breeding program of the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) in Mexico. We identified spatial autocorrelation through graphical analyses of distribution, isotropic variograms, and Moran's index. We used three spatial models for each trait: B-Splines, First-order Autoregressive (AR), and Bayesian Intrinsic Conditional Autoregressive (ICAR). We found that the data correlated over a maximum distance ranging from 6 to 10 m. The intensity of spatial autocorrelation, according to Moran's index, was 0.11 to 0.18 (p < 0.001, Z > 2.5). The Bayesian hierarchical and first-order autoregressive methods improved the model fit compared to the Spline approach. Heritability estimates were h2 = 0.11 ± 0.08 to 19 ± 0.10 for bean dry weight per tree, 0.11 ± 0.08 for the total number of pods per tree, and 0.36 ± 0.15 to 0.42 ± 0.16 for frosty pod rot disease. Correlations between models averaged r = 0.99, p < 0.001, with an average match ranging from 0.77 to 0.96 in the ranking of individuals under a selection pressure of 5%. These models contributed to understanding spatial patterns of disease dynamics and cacao production. Important traits for the INIFAP's breeding program and other programs facing the same challenges were considered in this study, aiming to improve the efficiency of those programs. Incorporation of these methods into breeding programs may allow for accurate estimation of the genetic parameters underlying the quantitative genetics of cacao trees, at the same time saving time and resources.

Mots-clés Agrovoc : Theobroma cacao, distribution spatiale, amélioration des plantes, pourriture, paramètre génétique, méthode d'amélioration génétique, variation génétique, amélioration génétique, épidémiologie, analyse spatiale, héritabilité, méthode statistique

Mots-clés géographiques Agrovoc : Mexique, Brésil

Mots-clés libres : Autocorrelation spatial, Cacao breeding, Spatial model

Agences de financement hors UE : Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Auteurs et affiliations

  • Solís Bonilla José Luis, UESC (BRA) - auteur correspondant
  • Denis Marie, CIRAD-BIOS-UMR AGAP (FRA)
  • Vanderlei Lopes Uilson, CEPEC (BRA) - auteur correspondant
  • Martínez Valencia Biaani Beeu, INIFAP (MEX)
  • Chia Wong Julio Alfonso, UESC (BRA)
  • Peres Gramacho Karina, CEPLAC (BRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/611409/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-19 ]