Agritrop
Accueil

Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale

Li Wei, Ciais Philippe, Stehfest Elke, Van Vuuren Detlef, Popp Alexander, Arneth Almut, Di Fulvio Fulvio, Doelman Jonathan, Humpenöder Florian, Harper Anna B., Park Taejin, Makowski David, Havlik Petr, Obersteiner Michael, Wang Jingmeng, Krause Andreas, Liu Wenfeng. 2020. Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth System Science Data, 12 (2) : 789-804.

Article de revue ; Data paper ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
614862.pdf

Télécharger (4MB) | Prévisualisation

Url - jeu de données - Entrepôt autre : https://doi.org/10.6084/m9.figshare.c.3951967 / Url - jeu de données - Entrepôt autre : https://doi.org/10.5281/zenodo.3274254

Quartile : Outlier, Sujet : GEOSCIENCES, MULTIDISCIPLINARY / Quartile : Outlier, Sujet : METEOROLOGY & ATMOSPHERIC SCIENCES

Résumé : Most scenarios from integrated assessment models (IAMs) that project greenhouse gas emissions include the use of bioenergy as a means to reduce CO2 emissions or even to achieve negative emissions (together with CCS – carbon capture and storage). The potential amount of CO2 that can be removed from the atmosphere depends, among others, on the yields of bioenergy crops, the land available to grow these crops and the efficiency with which CO2 produced by combustion is captured. While bioenergy crop yields can be simulated by models, estimates of the spatial distribution of bioenergy yields under current technology based on a large number of observations are currently lacking. In this study, a random-forest (RF) algorithm is used to upscale a bioenergy yield dataset of 3963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using climatic and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic bioenergy crops under current technology, climate and atmospheric CO2 conditions at a spatial resolution. We also provide a combined “best bioenergy crop” yield map by selecting one of the five crop types with the highest yield in each of the grid cells, eucalypt and Miscanthus in most cases. The global median yield of the best crop is 16.3 t DM ha−1 yr−1 (DM – dry matter). High yields mainly occur in the Amazon region and southeastern Asia. We further compare our empirically derived maps with yield maps used in three IAMs and find that the median yields in our maps are > 50 % higher than those in the IAM maps. Our estimates of gridded bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface models or to identify the most suitable lands for future bioenergy crop plantations. The global maps for yields of different bioenergy crops and the best crop and for the best crop composition generated from this study can be download from https://doi.org/10.5281/zenodo.3274254 (Li, 2019).

Mots-clés Agrovoc : rendement des cultures, bioénergie, Eucalyptus, cartographie, modélisation des cultures, fertilisation, culture bioénergétique, Panicum virgatum, Miscanthus, Salix, modèle de simulation, changement climatique, utilisation des terres, plante de culture

Agences de financement européennes : European Research Council

Agences de financement hors UE : National Key Research and Development Program of China

Projets sur financement : (EU) Effects of phosphorus limitations on Life, Earth system and Society

Auteurs et affiliations

  • Li Wei, Tsinghua University (CHN) - auteur correspondant
  • Ciais Philippe, CNRS (FRA)
  • Stehfest Elke, Netherlands Environmental Assessment Agency (NLD)
  • Van Vuuren Detlef, Netherlands Environmental Assessment Agency (NLD)
  • Popp Alexander, Potsdam Institute for Climate Impact Research (DEU)
  • Arneth Almut, Karlsruhe Institute of Technology (DEU)
  • Di Fulvio Fulvio, IIASA (AUT)
  • Doelman Jonathan, Netherlands Environmental Assessment Agency (NLD)
  • Humpenöder Florian, Potsdam Institute for Climate Impact Research (DEU)
  • Harper Anna B., University of Exeter (GBR)
  • Park Taejin, Boston University (USA)
  • Makowski David, CIRAD-ES-UMR CIRED (FRA)
  • Havlik Petr, IIASA (AUT)
  • Obersteiner Michael, IIASA (AUT)
  • Wang Jingmeng, Tsinghua University (CHN)
  • Krause Andreas, Karlsruhe Institute of Technology (DEU)
  • Liu Wenfeng, Université Paris-Saclay (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/614862/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-10-02 ]