Agritrop
Accueil

Numerical methods for the biomechanics of growing trees

Guillon Thomas, Dumont Yves, Fourcaud Thierry. 2012. Numerical methods for the biomechanics of growing trees. Computers and Mathematics with Applications, 64 (3) : 289-309.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_564798.pdf

Télécharger (640kB)

Quartile : Q1, Sujet : MATHEMATICS, APPLIED / Quartile : Q1, Sujet : COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS

Résumé : Modelling the biomechanics of growing trees is a non-classical problem, as the usual framework of structural mechanics does not take into account the evolution of the domain geometry due to growth processes. Incremental approaches have been used in rod theory to bypass this problem and to model the addition of new material points on an existing deformed structure. However, these approaches are based on the explicit time numerical algorithm of an unknown continuous model, and thus, the accuracy of the numerical results obtained cannot be analysed. A new continuous space-time formulation has been recently proposed to model the biomechanical response of growing rods. The aim of this paper is to discretise the corresponding non-linear system of partial differential equations and the linearised system in order to compare the numerical results with analytical solutions of the linearised problem. The finite element method is implemented to compute the space boundary problem and different time integration schemes are considered to solve the associated initial value problem with a special attention to the forward Euler method which is the analogue of the previously used incremental approach. The numerical results point out that the accuracy of the time integration schemes strongly depends on the value of the parameters. The forward Euler method may present slow convergence property and errors with significant orders of magnitude. Nevertheless, attention must be paid to implicit methods since, for specific values of the parameters and large time steps, they may lead to spurious solutions that may come from numerical instabilities. Hence, the second order Heun's method is an interesting alternative even if it is more time consuming.

Mots-clés Agrovoc : modèle végétal, modèle mathématique, croissance, arbre, anatomie végétale, port de la plante, développement biologique

Mots-clés complémentaires : Architecture des arbres, Biomodélisation

Classification Agris : F62 - Physiologie végétale - Croissance et développement
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : Hors axes (2005-2013)

Auteurs et affiliations

Source : Cirad - Agritrop (https://agritrop.cirad.fr/564798/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-01-28 ]