Agritrop
Accueil

Yield gap and the shares of climate and crop management in yield and yield variability of staple crops in West Africa. [O-3330b-01]

Affholder François, Sultan B., Kouakou Patrice Koffi, Poeydebat Charlotte, Muller Bertrand. 2015. Yield gap and the shares of climate and crop management in yield and yield variability of staple crops in West Africa. [O-3330b-01]. In : Our Common Future under Climate Change. International scientific conference Abstract Book 7-10 July 2015. Paris, France. CFCC15. Paris : CFCC15, Résumé, 596-597. Our Common Future under Climate Change, Paris, France, 7 Juillet 2015/10 Juillet 2015.

Communication sans actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID577058.pdf

Télécharger (257kB) | Prévisualisation

Résumé : " Yield gap " (Yg) is a key concept of agricultural science for identifying the room for improvement of yields through better management of the agroecosystem. in rainfed agriculture Yg is the difference between actual yield (Ya) and the theoretical water limited yield (Yw) that would be achieved if solar radiation, temperature and precipitations were the only factor limiting the crop's growth and yield. Changes in Yw over regions and years are due to climate-soil interactions that are not easily modified by crop management, whereas changes in Yg are due to limiting factors that are typically within the scope of crop management such as nutrient availability, weeds, and pests. We provide an example of yield gap estimates in semi-arid a frica, using yield and other agronomic data collected in famers' fields of Senegal in 1990 and 1991 and from 2006 to 2012. i t illustrates how contrarily to what most people would expect climate is not, on average, what most limits yields in that region: yet, actual yields are on average a quarter of water limited yield, and this is due to constraints whose reduction is technically possible albeit subject to the economic and environmental relevance of doing so. Most studies dealing with the impact of climate change on agriculture in West a frica compare Yw under present and future climate as predicted by climate models. t he magnitude of those predicted long term changes in Yw by 2050 is down to –20% in the worst scenario combining a +6°C change with a -20% rainfall change. s uch changes in water limited yields are certainly concerning, but they are remarkably small compared to the potential +390% increase that would result from closing the current yield gap. When considering yield variations observed across plots and years, and not anymore regional averages over a few years, what strikes is the stability of observed yields compared to variations of Yw. We used crop model simulations with historical series of 20 years of weather data to compare yield distributions over years of a crop grown using 3 contrasted levels of fertilisation and no incidence of weeds, pests or diseases. For each fertilisation level, the simulated yield reached a maximum value the 'best year' of the series. t he three fertilisation levels were chosen so that the maximum simulated yield reached 0.25 Yw, 0.5 Yw, and 0.75 Yw respectively. t he resulting simulated yield distributions show that even if management allows increasing the median yield, in many years the climate is the main limiting factor and fertilising has no or a slight impact only. i n other words, the way the current climate limits crop production in this region is by making uncertain the output of investing for high yields. Buying fertilizers or working hard for manure collection, transport and distribution do not translate, a certain number of years, into more production. For farmers struggling for the daily subsistence of their family, that kind of risk may not be justified while alternative use of family resources in cash and labour force provide less risky ways to produce subsistence means. Until recently, in many farming systems of West africa, the growth in food needs due to population growth in rural areas was matched thanks to increases in cultivated or pasted areas rather than increases in crop yields or livestock pressure on land (i.e extension rather than intensification of crop or livestock activities). When rural families reached the limits of this strategy, migrations of many kinds of distance and duration became the adjustment variable to the gap between resources available from farming and population needs. T his suggests that for many, it is less risky to leave home than to intensify cropping or livestock systems. Anyway, as job opportunities for migrants from the rural zones are currently low in West african cities and elsewhere, there are legitimate concerns about the way this strategy may soon reach its limit as well. i n terms of climate change, the worst scenario for farmers of that region would be if crop intensification became even more risky under future climate than at present. t here is thus an urgent need for joint agronomic and climate research to go beyond the prediction of Yw or of yield under unchanged crop management and determine whether or not the future climate will increase the yield risks associated with crop intensification in that region. But this should not divert from designing and implementing policies incentive to such intensification under present climate, as this might be much easier now than later. (Texte intégral)

Classification Agris : F01 - Culture des plantes
P40 - Météorologie et climatologie
F04 - Fertilisation
F62 - Physiologie végétale - Croissance et développement

Auteurs et affiliations

  • Affholder François, CIRAD-PERSYST-UPR AIDA (FRA)
  • Sultan B., CNRS (FRA)
  • Kouakou Patrice Koffi, CIRAD-PERSYST-UPR AIDA (BFA) ORCID: 0000-0003-3623-1452
  • Poeydebat Charlotte, CIRAD-PERSYST-UPR Systèmes de culture bananes et ananas (MTQ)
  • Muller Bertrand, CIRAD-BIOS-UMR AGAP (SEN)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/577058/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-29 ]