Agritrop
Accueil

Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine

Fodor Agota, Segura Vincent, Denis Marie, Neuenschwander Samuel, Fournier-Level Alexandre, Chatelet Philippe, Aziz Homa Félix Abdel, Lacombe Thierry, This Patrice, Le Cunff Loïc. 2014. Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine. PloS One, 9 (11):e110436, 14 p.

Article de revue ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
577259.pdf

Télécharger (1MB) | Prévisualisation

Quartile : Q1, Sujet : MULTIDISCIPLINARY SCIENCES

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie; Staps

Résumé : Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS- GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.

Classification Agris : F30 - Génétique et amélioration des plantes

Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive

Auteurs et affiliations

  • Fodor Agota, INRA (FRA)
  • Segura Vincent, INRA (FRA)
  • Denis Marie, CIRAD-BIOS-UMR AGAP (FRA)
  • Neuenschwander Samuel, UNIL (CHE)
  • Fournier-Level Alexandre, University of Melbourne (AUS)
  • Chatelet Philippe, INRA (FRA)
  • Aziz Homa Félix Abdel
  • Lacombe Thierry
  • This Patrice, INRA (FRA)
  • Le Cunff Loïc, INRA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/577259/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-10-27 ]