Agritrop
Accueil

Parameter identification of plant growth models with stochastic development

Kang Meng Zhen, Hua Jing, De Reffye Philippe, Jaeger Marc. 2016. Parameter identification of plant growth models with stochastic development. In : 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA). IEEE, FSPMA. Qingdao : IEEE, 98-105. ISBN 978-1-5090-1659-4 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA 2016), Qingdao, Chine, 7 Novembre 2016/11 Novembre 2016.

Communication avec actes
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID584225.pdf

Télécharger (1MB) | Demander une copie

Résumé : Plant architectures generally display structural variations among individuals. Stochastic FSPMs have been developed to capture such feature, but calibrating such models is a challenging issue. For GreenLab model, parameter identification has been achieved on several crops and trees, but the estimation of functional parameters is mostly limited to plants with deterministic development. In this work, we propose a methodological framework allowing the efficient FSPM parameter estimation for stochastic ramified plants. We focus on the randomness in three kinds of meristem activities in plant development: growth, death and branching. Concepts of organic series and potential structure are introduced to build the fitting target as well as corresponding model output. We show that, with a limited set of sampled plants (here from simulation), using a few organic series, the inverse method retrieves well the parameter values (the original parameter set being known here). Requiring the concept of physiological age and the assumption of common biomass pool, the proposed approach provides a solution of solving source-sink functions of complex plant architectures, with a novel simplified way of plant sampling. The proposed parameter estimation frame is promising, since this in silico process mimics the procedure of calibrating model for real plants in a stand. Estimating parameters on stochastic plant architectures opens a new range of coming applications.

Classification Agris : F62 - Physiologie végétale - Croissance et développement
F50 - Anatomie et morphologie des plantes
U10 - Informatique, mathématiques et statistiques

Auteurs et affiliations

  • Kang Meng Zhen, CAS (CHN)
  • Hua Jing, CAS (CHN)
  • De Reffye Philippe
  • Jaeger Marc, CIRAD-BIOS-UMR AMAP (FRA)

Autres liens de la publication

Source : Cirad-Agritrop (https://agritrop.cirad.fr/584225/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-04-02 ]