Fize Jacques, Roche Mathieu, Teisseire Maguelonne.
2018. Matching heterogeneous textual data using spatial features.
In : Proceedings of IEEE International Conference on Data Mining Workshops (ICDMW). IEEE Computer Society
Version publiée
- Anglais
Accès réservé aux agents Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Fize_et_al_SSTDM_ 2018.pdf Télécharger (601kB) | Demander une copie |
Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/KH7YTO
Résumé : An increasing amount of textual data is made avail-able through different medium (e.g., social networks, company, data catalog, etc.). These new resources are highly heterogeneous, therefore new methods are needed to extract information. Here, we propose a text matching process based on spatial features and compatible with heterogeneous textual data. Besides being compatible with heterogeneous data, we introduce two contri-butions. First, to be compared, spatial information is extracted then stored in a dedicated representation: STR, or Spatial Textual Representation. Second, to improve the approximation of the spatial similarity, we propose two transformations to apply on STR. To support our contributions, we evaluate the different aspects of the process using two corpora, including one corpus that is highly heterogeneous. Results obtained on both corpora demonstrate that relevant spatial matches can be obtained between the most similar STRs with an improvement due to STR transformation.
Mots-clés libres : Heterogeneous data, Spatial data mining
Auteurs et affiliations
- Fize Jacques, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-1783-934X
- Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
- Teisseire Maguelonne, IRSTEA (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/589684/)
[ Page générée et mise en cache le 2021-11-25 ]