Consequences of clear-cutting and drought on fine root dynamics down to 17 m in coppice-managed eucalypt plantations

Germon Amandine, Jourdan Christophe, Bordron Bruno, Robin Agnès, Nouvellon Yann, Chapuis-Lardy Lydie, De Moraes Gonçalves Jose Leonardo, Pradier Céline, Guerrini Iraê Amaral, Laclau Jean-Paul. 2019. Consequences of clear-cutting and drought on fine root dynamics down to 17 m in coppice-managed eucalypt plantations. Forest Ecology and Management, 445 : pp. 48-59.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Germon 2019 Consequences of clear-cutting and drought on fine root dynamics down to 17 m in coppice-managed eucalypt plantations.pdf

Télécharger (2MB) | Request a copy

Quartile : Q1, Sujet : FORESTRY

Abstract : Improving our understanding of the spatiotemporal dynamics of fine roots in deep soil layers is of utter importance to manage tropical planted forests in a context of climate change. Our study aimed to assess the effect of clear-cutting and drought on fine-root dynamics down to the water table in Brazilian ferralsol under eucalypt plantations conducted in coppice. Fine roots (i.e. diameter <2 mm) were sampled down to 17 m deep in a throughfall exclusion experiment comparing stands with 37% of throughfall excluded by plastic sheets (−W) and stands without rain exclusion (+W). Root dynamics were studied using minirhizotron in two permanent pits down to 17 m deep, over 1 year before clear-cutting, then over 2 years in coppice, as well as down to 4 m deep in a non-harvested plot (NH) serving as a control. After harvesting, a spectacular fine root growth of trees conducted in coppice occurred in very deep soil layers (>13 m) and, surprisingly, root mortality remained extremely low whatever the depth and the treatment. Total fine-root biomass in coppice down to 17 m depth was 1266 and 1017 g m−2 in +W and −W, respectively, at 1.5 year after the clear-cut and was 1078 g m−2 in NH 7.5 years after planting. Specific root length and specific root area were about 15% higher in −W than in +W. Proliferation of fine roots at great depths could be an adaptive mechanism for tree survival, enhancing the access to water stored in the subsoil. The root system established before clear-cutting provides access to water stored in very deep layers that probably contribute to mitigate the risk of tree mortality during prolonged drought periods when the eucalypt plantations is conducted in coppice after the clear-cut.

Mots-clés Agrovoc : Eucalyptus grandis, Coupe rase, Rhizosphère, Résistance à la sécheresse, Système racinaire, Croissance, Plantation forestière

Mots-clés géographiques Agrovoc : Brésil

Mots-clés libres : Deep root growth, Throughfall exclusion, Eucalyptus grandis, Deep ferralsol profile, Minirhizotron, Coppice, Brazil

Classification Agris : K10 - Forestry production
F62 - Plant physiology - Growth and development

Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques

Auteurs et affiliations

  • Germon Amandine, CIRAD-PERSYST-UMR Eco&Sols (FRA) - auteur correspondant
  • Jourdan Christophe, CIRAD-PERSYST-UMR Eco&Sols (SEN)
  • Bordron Bruno, ESALQ (BRA)
  • Robin Agnès, CIRAD-PERSYST-UMR Eco&Sols (BRA)
  • Nouvellon Yann, CIRAD-PERSYST-UMR Eco&Sols (THA)
  • Chapuis-Lardy Lydie, IRD (FRA)
  • De Moraes Gonçalves Jose Leonardo, Universidade de São Paulo (BRA)
  • Pradier Céline, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Guerrini Iraê Amaral, UNESP (BRA)
  • Laclau Jean-Paul, CIRAD-DG-Saurs (FRA) ORCID: 0000-0002-2506-214X

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-05-17 ]