Agritrop
Accueil

A novel robust PLS regression method inspired from boosting principles: RoBoost-PLSR

Metz Maxime, Abdelghafour Florent, Roger Jean-Michel, Lesnoff Matthieu. 2021. A novel robust PLS regression method inspired from boosting principles: RoBoost-PLSR. Analytica Chimica Acta, 1179:338823, 13 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
metz et al anal chim acta 2021 roboost.pdf

Télécharger (4MB) | Demander une copie
[img]
Prévisualisation
Version post-print - Anglais
Sous licence Licence Creative Commons.
600015_MAA.pdf

Télécharger (17MB) | Prévisualisation

Quartile : Q1, Sujet : CHEMISTRY, ANALYTICAL

Résumé : The calibration of Partial Least Square regression (PLSR) models can be disturbed by outlying samples in the data. In these cases the models can be unstable and their predictive potential can be depreciated. To address this problem, some robust versions of the PLSR Algorithm were proposed. These algorithms rely on the downweighting of these outliers during calibration. To this end, it is necessary to estimate an inconsistency measurement between the samples and the model. However, this estimation is not trivial in high dimensions. This paper proposes a novel robust PLSR algorithm inspired from the principles of boosting: RoBoost-PLSR. This method consists of realising a series of one latent variable weighted PLSR. RoBoost-PLSR is compared with the PLSR algorithm calibrated with and without outliers and also with Partial Robust M-regression (PRM), a reference robust method. This evaluation is conducted on the basis of three simulated datasets and a real dataset. Finally Roboost-PLSR proves to be resilient to the tested outliers, and can achieve the performances of the reference PLSR calibrated without any outlier.

Mots-clés Agrovoc : modèle de simulation, modèle mathématique, vecteur de maladie

Mots-clés libres : Partial least squares, Outliers, Robustness, Boosting

Champ stratégique Cirad : CTS 7 (2019-) - Hors champs stratégiques

Auteurs et affiliations

  • Metz Maxime, Montpellier SupAgro (FRA) - auteur correspondant
  • Abdelghafour Florent, Université de Montpellier (FRA)
  • Roger Jean-Michel, INRAE (FRA)
  • Lesnoff Matthieu, CIRAD-ES-UMR SELMET (FRA) ORCID: 0000-0002-5205-9763

Source : Cirad-Agritrop (https://agritrop.cirad.fr/600015/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-04 ]