Agritrop
Accueil

Performance of local indices of spatial heterogeneity, to screen clusters of risk factors or disease

Bonnet Pascal, Lesnoff Matthieu. 2006. Performance of local indices of spatial heterogeneity, to screen clusters of risk factors or disease. In : Proceedings of the 11th Symposium of the International Society of Veterinary Epidemiology and Economics, Cairns, Australia. ISVEE. Cairns : ISVEE, Résumé (ISVEE Proceedings, 1177-360X, 11) International Symposium on Veterinary Epidemiology and Economics. 11, Cairns, Australie, 6 Août 2006/11 Août 2006.

Communication sans actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID600046.pdf

Télécharger (7kB) | Prévisualisation

Résumé : The paper presents the relative performance and characteristics of different local indicators of spatial homogeneity or heterogeneity (spatial association indices G and G* Getis, Local Indicator of Spatial Autocorrelation (LISA), Local Joint Count Statistics)), applied to quantitative or qualitative data in animal health. Sensitivity of test to identify particular spatial structures of events is well described in the literature, and is hereafter applied to health data. Concentration and autocorrelation indices can help to better interpret the type of dynamic of the events under investigation. The paper presents an application to a dataset on Contagious Bovine Pleuropneumonia (CBPP) data in a territory in the Ethiopian highlands. In conclusion their joint use is promoted in order to investigate clusters and clumping of risk factors or diseases when no global spatial autocorrelation is found in a dataset

Auteurs et affiliations

  • Bonnet Pascal, CIRAD-EMVT-UPR Systèmes d'élevage (BWA)
  • Lesnoff Matthieu, CIRAD-EMVT-UPR Systèmes d'élevage (KEN) ORCID: 0000-0002-5205-9763

Source : Cirad - Agritrop (https://agritrop.cirad.fr/600046/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-10-30 ]