Agritrop
Accueil

Transform rice breeding through integration of genomic selection with regional testing network

Prakash Parthiban Thathapalli, Arbelaez Velez Juan David, Bartholome Jérôme, Imee Zhella Rose, Verdeprado Holden, Lopena Vitaliano, Rutkoski Jessica, Rafiqul Mohammad, Murori Rosemary, Ndayiragije Alexis, Singh V.P., Kumar Katiyar Sanjay, Cobb Joshua N., Kadaru Suresh, Bhosale Sankalp. 2022. Transform rice breeding through integration of genomic selection with regional testing network. . San Diego : PAG, Résumé, 1 p. Plant and Animal Genome conference. 29, San Diego, États-Unis, 8 Janvier 2022/12 Janvier 2022.

Communication sans actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID600265.pdf

Télécharger (260kB) | Prévisualisation

Résumé : Genomic prediction can be a powerful tool to achieve greater rates of genetic gain for quantitative traits if thoroughly integrated into a breeding strategy. In rice as in other crops, the interest in genomic prediction is very strong with a number of studies addressing multiple aspects of its use, ranging from the more conceptual to the more practical. There are important considerations for the integration of genomic prediction in public breeding programs especially while integrating rice regional testing network partners for phenotyping the training sets in the partner locations. The irrigated breeding program at the International Rice Research Institute is used as a concrete example on which we provide data and R scripts to reproduce the analysis but also to highlight practical challenges regarding the use of predictions. The adage: "To someone with a hammer, everything looks like a nail" describes a common psychological pitfall that sometimes plagues the integration and application of new technologies to a discipline. In here we try to outline the benefits and bottlenecks of applying genomic prediction in an active breeding program.

Auteurs et affiliations

  • Prakash Parthiban Thathapalli, IRRI [International Rice Research Institute] (PHL)
  • Arbelaez Velez Juan David, University of Illinois (USA)
  • Bartholome Jérôme, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-0855-3828
  • Imee Zhella Rose, IRRI [International Rice Research Institute] (PHL)
  • Verdeprado Holden, IRRI [International Rice Research Institute] (PHL)
  • Lopena Vitaliano, IRRI [International Rice Research Institute] (PHL)
  • Rutkoski Jessica, University of Illinois (USA)
  • Rafiqul Mohammad, IRRI [International Rice Research Institute] (IDN)
  • Murori Rosemary, IRRI [International Rice Research Institute] (PHL)
  • Ndayiragije Alexis, IRRI [International Rice Research Institute] (MOZ)
  • Singh V.P., IRRI [International Rice Research Institute] (PHL)
  • Kumar Katiyar Sanjay, IRRI [International Rice Research Institute] (PHL)
  • Cobb Joshua N., IRRI [International Rice Research Institute] (PHL)
  • Kadaru Suresh, IRRI [International Rice Research Institute] (PHL)
  • Bhosale Sankalp, Syngenta Phils. Inc. (PHL)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/600265/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-01 ]