Zegaoui Younes, Chaumont Marc, Subsol Gérard, Borianne Philippe, Derras Mustapha.
2019. Urban object classification with 3D Deep-Learning.
In : 2019 Joint Urban Remote Sensing Event (JURSE 2019): Proceedings of a meeting held 22-24 May 2019, Vannes, France. IEEE-GRSS
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. ID600783.pdf Télécharger (1MB) | Demander une copie |
Résumé : Automatic urban object detection remains a challenge for city management. Existing approaches in remote sensing include the use of aerial images or LiDAR to map a scene. This is, for example, the case for patch-based detection methods. However, these methods do not fully exploit the 3D information given by a LiDAR acquisition because they are similar to depth map. 3D Deep-Learning methods are promising to tackle the issue of the urban objects detection inside a LiDAR cloud. In this paper, we present the results of several experiments on urban object classification with the PointNet network trained with public data and tested on our data-set. We show that such a methodology delivers encouraging results, and also identify the limits and the possible improvements.
Auteurs et affiliations
- Zegaoui Younes, LIRMM (FRA)
- Chaumont Marc, LIRMM (FRA)
- Subsol Gérard, LIRMM (FRA)
- Borianne Philippe, CIRAD-BIOS-UMR AMAP (FRA)
- Derras Mustapha, Berger-Levrault (FRA)
Autres liens de la publication
Source : Cirad-Agritrop (https://agritrop.cirad.fr/600783/)
[ Page générée et mise en cache le 2024-04-06 ]