Agritrop
Accueil

Dealing with large volumes of complex relational data using RCA

Braud Agnès, Dolques Xavier, Gutierrez Alain, Huchard Marianne, Keip Priscilla, Le Ber Florence, Martin Pierre, Nica Cristina, Silvie Pierre. 2021. Dealing with large volumes of complex relational data using RCA. In : Complex data analytics with formal concept analysis. Missaoui Rokia (ed.), Kwuida Léonard (ed.), Abdessalem Talel (ed.). Cham : Springer, 105-134. ISBN 978-3-030-93277-0

Chapitre d'ouvrage
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID601324.pdf

Télécharger (9MB) | Demander une copie
[img] Version Online first - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
5.pdf

Télécharger (1MB) | Demander une copie

Résumé : Most of available data are inherently relational, with e.g. temporal, spatial, causal or social relations. Besides, many datasets involve complex and voluminous data. Therefore, the exploration of relational data is a major challenge for Formal Concept Analysis (FCA). Relational Concept Analysis (RCA) is specifically designed to investigate the relational structure of a dataset in the FCA paradigm. In this chapter, we examine how RCA can take over the issues raised by complex data. Using two datasets, one about the quality monitoring of waterbodies in France, the other about the use of pesticidal and antimicrobial plants in Africa, we study the limitations of different FCA algorithms, and their current implementations to explore these datasets with RCA. We also show how pattern extraction combined with the presentation of data in hierarchical structures is appropriate for the analysis of temporal datasets by the domain expert. Finally, we discuss about the possible directions to investigate.

Mots-clés libres : Formal concept analysis, Data mining, Pesticidal plants, Relational concept analysis, Big data

Auteurs et affiliations

  • Braud Agnès, Université de Strasbourg (FRA)
  • Dolques Xavier, Université de Strasbourg (FRA)
  • Gutierrez Alain, LIRMM (FRA)
  • Huchard Marianne, LIRMM (FRA)
  • Keip Priscilla, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0001-6542-3360
  • Le Ber Florence, ENGEES (FRA)
  • Martin Pierre, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0002-4874-5795
  • Nica Cristina, Nicolae Titulescu University of Bucharest (ROU)
  • Silvie Pierre, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0002-3406-6230

Autres liens de la publication

Source : Cirad-Agritrop (https://agritrop.cirad.fr/601324/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-31 ]