Agritrop
Accueil

An annotated dataset for event-based surveillance of antimicrobial resistance

Arinik Nejat, Van Bortel Wim, Boudoua Bahdja, Busani Luca, Decoupes Rémy, Interdonato Roberto, Kafando Rodrique, Van Kleef Esther, Roche Mathieu, Syed Mehtab Alam, Teisseire Maguelonne. 2023. An annotated dataset for event-based surveillance of antimicrobial resistance. Data in Brief, 46:108870, 8 p.

Article de revue ; Data paper ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
1-s2.0-S2352340922010733-main.pdf

Télécharger (378kB) | Prévisualisation

Url - jeu de données - Entrepôt autre : https://doi.org/10.57745/MPNSPH

Résumé : This paper presents an annotated dataset used in the MOOD Antimicrobial Resistance (AMR) hackathon, hosted in Montpellier, June 2022. The collected data concerns unstructured data from news items, scientific publications and national or international reports, collected from four event-based surveillance (EBS) Systems, i.e. ProMED, PADI-web, HealthMap and MedISys. Data was annotated by relevance for epidemic intelligence (EI) purposes with the help of AMR experts and an annotation guideline. Extracted data were intended to include relevant events on the emergence and spread of AMR such as reports on AMR trends, discovery of new drug-bug resistances, or new AMR genes in human, animal or environmental reservoirs. This dataset can be used to train or evaluate classification approaches to automatically identify written text on AMR events across the different reservoirs and sectors of One Health (i.e. human, animal, food, environmental sources, such as soil and waste water) in unstructured data (e.g. news, tweets) and classify these events by relevance for EI purposes.

Mots-clés Agrovoc : résistance aux antimicrobiens, fouille de textes, analyse de données, épidémiologie, annotation de données, approche Une seule santé

Mots-clés complémentaires : jeu de données

Mots-clés libres : Epidemic intelligence, Event-based surveillance, Antimicrobial resistance, One Health, Text Mining, Classification, Annotation

Classification Agris : U10 - Informatique, mathématiques et statistiques
L75 - Pharmacologie et toxicologie

Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes

Agences de financement européennes : European Commission

Programme de financement européen : H2020

Projets sur financement : (EU) MOnitoring Outbreak events for Disease surveillance in a data science context

Auteurs et affiliations

  • Arinik Nejat, INRAE (FRA)
  • Van Bortel Wim, ITM (BEL)
  • Boudoua Bahdja, INRAE (FRA)
  • Busani Luca, Istituto Superiore di Sanita (ITA)
  • Decoupes Rémy, INRAE (FRA)
  • Interdonato Roberto, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-0536-6277
  • Kafando Rodrique, INRAE (FRA)
  • Van Kleef Esther, ITM (BEL)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
  • Syed Mehtab Alam, CIRAD-ES-UMR TETIS (FRA)
  • Teisseire Maguelonne, INRAE (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/603290/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-02-01 ]