Braud Agnès, Dolques Xavier, Huchard Marianne, Le Ber Florence, Martin Pierre.
2023. Relational concept analysis in practice: Capitalizing on data modeling using design patterns.
In : Formal concept analysis: 17th International Conference, ICFCA 2023, Kassel, Germany, July 17–21, 2023, Proceedings. Durrschnabel Dominik (ed.), López Rodríguez Domingo (ed.)
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. ID605358.pdf Télécharger (303kB) | Demander une copie |
|
Version post-print
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 2022_ICFCA_Design_Patterns_camera_ready.pdf Télécharger (605kB) | Demander une copie |
Résumé : Many applications of Formal Concept Analysis (FCA) and its diverse extensions have been carried out in recent years. Among these extensions, Relational Concept Analysis (RCA) is one approach for addressing knowledge discovery in multi-relational datasets. Applying RCA requires stating a question of interest and encoding the dataset into the input RCA data model, i.e. an Entity-Relationship model with only Boolean attributes in the entity description and unidirectional binary relationships. From the various concrete RCA applications, recurring encoding patterns can be observed, that we aim to capitalize taking software engineering design patterns as a source of inspiration. This capitalization work intends to rationalize and facilitate encoding in future RCA applications. In this paper, we describe an approach for defining such design patterns, and we present two design patterns: “Separate/Gather Views” and “Level Relations”.
Mots-clés libres : Formal concept analysis, Relational concept analysis, Design pattern, Classification (information)
Agences de financement hors UE : Agence Nationale de la Recherche
Projets sur financement : (FRA) Analyse Formelle de Concepts : un outil intelligent pour l'analyse de données complexes
Auteurs et affiliations
- Braud Agnès, Université de Strasbourg (FRA)
- Dolques Xavier, Université de Strasbourg (FRA)
- Huchard Marianne, Université de Montpellier (FRA)
- Le Ber Florence, ENGEES (FRA)
- Martin Pierre, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0002-4874-5795
Autres liens de la publication
Source : Cirad-Agritrop (https://agritrop.cirad.fr/605358/)
[ Page générée et mise en cache le 2024-04-06 ]