Agritrop
Accueil

RCAviz: Exploratory search in multi-relational datasets represented using relational concept analysis

Huchard Marianne, Martin Pierre, Muller Emile, Poncelet Pascal, Raveneau Vincent, Sallaberry Arnaud. 2024. RCAviz: Exploratory search in multi-relational datasets represented using relational concept analysis. International Journal of Approximate Reasoning, 166:109123, 22 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Huchard_2024.pdf

Télécharger (5MB) | Prévisualisation

Résumé : The conceptual structures built with Formal Concept Analysis (FCA) and its extensions are appropriate constructs for supporting Exploratory Search (ES). FCA indeed classifies a set of objects described by Boolean attributes in a concept lattice which is prone to (intra-lattice) navigation. Relational Concept Analysis (RCA), for its part, classifies several sets of objects connected through multiple binary relationships by using logical operators (quantifiers) which can be approximate. The output is a set of interconnected concept lattices, thus adding inter-lattice navigation opportunities. In this paper, we describe the web platform RCAviz, which aims to support such intra- and inter-lattice navigation. The user can select a subset of objects and attributes as a starting point for navigation. Then RCAviz shows the associated concept and its close intra- and inter-lattice neighbors. The user can access to the objects and attributes introduced and inherited in a concept. They then can navigate, i.e. zoom and pan the current view, and move from one concept to another. Additional views show the previous and the next conceptual structures, as well as an history which allows the user to browse its navigation. A navigation example is shown on a real dataset to illustrate the potential of RCAviz for ES.

Mots-clés Agrovoc : gestion des connaissances, méthode de recherche, traitement de l'information, analyse de données

Mots-clés libres : Exploratory search, Formal concept analysis, Relational concept analysis, Visual analytics

Classification Agris : U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : CTS 7 (2019-) - Hors champs stratégiques

Agences de financement hors UE : Agence Nationale de la Recherche

Projets sur financement : (FRA) Institut Convergences en Agriculture Numérique, (FRA) Analyse Formelle de Concepts : un outil intelligent pour l'analyse de données complexes

Auteurs et affiliations

  • Huchard Marianne, Université de Montpellier (FRA) - auteur correspondant
  • Martin Pierre, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0002-4874-5795 - auteur correspondant
  • Muller Emile, Université de Montpellier (FRA)
  • Poncelet Pascal, LIRMM (FRA)
  • Raveneau Vincent, Université de Montpellier (FRA)
  • Sallaberry Arnaud, LIRMM (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/608052/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-04-05 ]