Joly Alexis, Botella Christophe, Picek Lukáš, Kahl Stefan, Goeau Hervé, Deneu Benjamin, Marcos Diego, Estopinan Joaquim, Leblanc César, Larcher Théo, Chamidullin Rail, Sulc Milan, Hrúz Marek, Servajean Maximilien, Glotin Hervé, Planqué Robert, Vellinga Willem-Pier, Klinck Holger, Denton Tom, Eggel Ivan, Bonnet Pierre, Müller Henning.
2023. Overview of LifeCLEF 2023: Evaluation of AI models for the identification and prediction of birds, plants, snakes and fungi.
In : Experimental IR meets multilinguality, multimodality, and interaction: 14th International Conference of the CLEF Association, CLEF 2023, Thessaloniki, Greece, September 18–21, 2023, Proceedings. Arampatzis Avi (ed.), Kanoulas Evangelos (ed.), Tsikrika Theodora (ed.), Vrochidis Stefanos (ed.), Giachanou Anastasia (ed.), Li Dan (ed.), Aliannejadi Mohammad (ed.), Vlachos Michalis (ed.), Faggioli Guglielmo (ed.), Ferro Nicola (ed.)
Version post-print
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 608259.pdf Télécharger (425kB) | Demander une copie |
Résumé : Biodiversity monitoring through AI approaches is essential, as it enables the efficient analysis of vast amounts of data, providing comprehensive insights into species distribution and ecosystem health and aiding in informed conservation decisions. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The LifeCLEF virtual lab has been promoting and evaluating advances in this domain since 2011. The 2023 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) BirdCLEF: bird species recognition in long-term audio recordings (soundscapes), (ii) SnakeCLEF: snake identification in medically important scenarios, (iii) PlantCLEF: very large-scale plant identification, (iv) FungiCLEF: fungi recognition beyond 0–1 cost, and (v) GeoLifeCLEF: remote sensing-based prediction of species. This paper overviews the motivation, methodology, and main outcomes of that five challenges.
Agences de financement européennes : European Commission
Programme de financement européen : Horizon Europe
Projets sur financement : (EU) safeGUARDing biodivErsity aNd critical ecosystem services across sectors and scales, (EU) Modern Approaches to the Monitoring of BiOdiversity
Auteurs et affiliations
- Joly Alexis, INRIA (FRA)
- Botella Christophe, INRIA (FRA)
- Picek Lukáš, University of West Bohemia (CZE)
- Kahl Stefan, Cornell University (USA)
- Goeau Hervé, CIRAD-BIOS-UMR AMAP (FRA)
- Deneu Benjamin, INRIA (FRA)
- Marcos Diego, INRIA (FRA)
- Estopinan Joaquim, INRIA (FRA)
- Leblanc César, CIRAD-BIOS-UMR AMAP (FRA)
- Larcher Théo, INRIA (FRA)
- Chamidullin Rail, University of West Bohemia (CZE)
- Sulc Milan
- Hrúz Marek, University of West Bohemia (CZE)
- Servajean Maximilien, CNRS (FRA)
- Glotin Hervé, Université de Toulon et du Var (FRA)
- Planqué Robert, Xeno-canto foundation (NLD)
- Vellinga Willem-Pier, Xeno-canto foundation (NLD)
- Klinck Holger, Cornell University (USA)
- Denton Tom, Google LLC (USA)
- Eggel Ivan, HES (CHE)
- Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
- Müller Henning, HES (CHE)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/608259/)
[ Page générée et mise en cache le 2024-03-04 ]