Agritrop
Accueil

Synthesising results of meta‑analyses to inform policy: A comparison of fast‑track methods

Makowski David, Catarino Rui, Chen Mathilde, Bosco Simona, Montero‑Castaño Ana, Pérez-Soba Marta, Schievano Andrea, Tamburini Giovanni. 2024. Synthesising results of meta‑analyses to inform policy: A comparison of fast‑track methods. Environmental Evidence, 12 (16), 14 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
s13750-023-00309-y.pdf

Télécharger (1MB) | Prévisualisation

Url - autres données associées : https://github.com/davemakowski/CodePaper2ndOrderMAs

Résumé : Statistical synthesis of data sets (meta‑analysis, MA) has become a popular approach for providing scientific evidence to inform environmental and agricultural policy. As the number of published MAs is increasing exponentially, mul‑ tiple MAs are now often available on a specific topic, delivering sometimes conflicting conclusions. To synthesise several MAs, a first approach is to extract the primary data of all the MAs and make a new MA of all data. However, this approach is not always compatible with the short period of time available to respond to a specific policy request. An alternative, and faster, approach is to synthesise the results of the MAs directly, without going back to the primary data. However, the reliability of this approach is not well known. In this paper, we evaluate three fast‑track methods for synthesising the results of MAs without using the primary data. The performances of these methods are then compared to a global MA of primary data. Results show that two of the methods tested can yield similar conclusions when compared to global MA of primary data, especially when the level of redundancy between MAs is low. We show that the use of biased MAs can reduce the reliability of the conclusions derived from these methods.

Mots-clés Agrovoc : méthode statistique, politique agricole, statistiques agricoles

Mots-clés libres : Agricultural policy, Bias, False discovery, Fast-track synthesis, Meta-analysis, Vote counting

Auteurs et affiliations

  • Makowski David, Université Paris-Saclay (FRA) - auteur correspondant
  • Catarino Rui, JRC (ITA)
  • Chen Mathilde, INRAE (FRA) ORCID: 0000-0002-5982-2143
  • Bosco Simona, JRC (ITA)
  • Montero‑Castaño Ana, JRC (ITA)
  • Pérez-Soba Marta, JRC (ITA) - auteur correspondant
  • Schievano Andrea, JRC (ITA)
  • Tamburini Giovanni, University of Bari Aldo Moro (ITA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/611340/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-20 ]