Goutard Flavie, Paul Mathilde, Tavornpanich Saraya, Houisse Ivan, Chanachai Karoon, Thanapongtharm Weerapong, Cameron Angus, Stark Katharina, Roger François. 2012. Optimizing early detection of avian influenza H5N1 in backyard and free-range poultry production systems in Thailand. Preventive Veterinary Medicine, 105 (3) : 223-234.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. document_564422.pdf Télécharger (843kB) |
Quartile : Q1, Sujet : VETERINARY SCIENCES
Résumé : For infectious diseases such as highly pathogenic avian influenza caused by the H5N1 virus (A/H5N1 HP), early warning system is essential. Evaluating the sensitivity of surveillance is a necessary step in ensuring an efficient and sustainable system. Stochastic scenario tree modeling was used here to assess the sensitivity of the A/H5N1 HP surveillance system in backyard and free-grazing duck farms in Thailand. The whole surveillance system for disease detection was modeled with all components and the sensitivity of each component and of the overall system was estimated. Scenarios were tested according to selection of high-risk areas, inclusion of components and sampling procedure, were tested. Nationwide passive surveillance (SSC1) and risk-based clinical X-ray (SSC2) showed a similar sensitivity level, with a median sensitivity ratio of 0.96 (95% CI 0.40-15.00). They both provide higher sensitivity than the X-ray laboratory component (SSC3). With the current surveillance design, the sensitivity of detection of the overall surveillance system when the three components are implemented, was equal to 100% for a farm level prevalence of 0.05% and 82% (95% CI 71-89%) for a level of infection of 3 farms. Findings from this study illustrate the usefulness of scenario-tree modeling to document freedom from diseases in developing countries.
Mots-clés Agrovoc : Influenzavirus aviaire, surveillance épidémiologique, évaluation du risque, modèle mathématique, modèle de simulation, diagnostic précoce, Enquête pathologique, distribution spatiale, aviculture, poulet
Mots-clés géographiques Agrovoc : Thaïlande
Classification Agris : L73 - Maladies des animaux
Champ stratégique Cirad : Axe 4 (2005-2013) - Santé animale et maladies émergentes
Auteurs et affiliations
- Goutard Flavie, CIRAD-ES-UPR AGIRs (KHM) ORCID: 0000-0002-8618-4132
- Paul Mathilde, INRA (FRA)
- Tavornpanich Saraya, Department of Livestock Development (THA)
- Houisse Ivan, Murdoch University (AUS)
- Chanachai Karoon, Department of Livestock Development (THA)
- Thanapongtharm Weerapong, Department of Livestock Development (THA)
- Cameron Angus, AusVet Animal Health Services (FRA)
- Stark Katharina, Royal Veterinary College (GBR)
- Roger François, CIRAD-ES-UPR AGIRs (THA) ORCID: 0000-0002-1573-6833
Autres liens de la publication
Source : Cirad - Agritrop (https://agritrop.cirad.fr/564422/)
[ Page générée et mise en cache le 2024-12-20 ]