Yao Yunjun, Liang Shunlin, Li Xianglan, Chen Jiquan, Liu Shaomin, Zhang Xiaopeng, Xiao Zhiqiang, Fisher Joshua B., Mu Qiaozhen, Pan Ming, Liu Meng, Cheng Jie, Jiang Bo, Xie Xianhong, Grünwald Thomas, Bernhofer Christian, Roupsard Olivier. 2017. Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agricultural and Forest Meteorology, 242 : 55-74.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Yao AFM 2017 Improving global terrestrial evapotranspiration support vector machine 3 process algorithms.pdf Télécharger (4MB) | Demander une copie |
Quartile : Q1, Sujet : FORESTRY / Quartile : Outlier, Sujet : AGRONOMY / Quartile : Q1, Sujet : METEOROLOGY & ATMOSPHERIC SCIENCES
Résumé : Terrestrial evapotranspiration (ET) for each plant functional type (PFT) is a key variable for linking the energy, water and carbon cycles of the atmosphere, hydrosphere and biosphere. Process-based algorithms have been widely used to estimate global terrestrial ET, yet each ET individual algorithm has exhibited large uncertainties. In this study, the support vector machine (SVM) method was introduced to improve global terrestrial ET estimation by integrating three process-based ET algorithms: MOD16, PT-JPL and SEMI-PM. At 200 FLUXNET flux tower sites, we evaluated the performance of the SVM method and others, including the Bayesian model averaging (BMA) method and the general regression neural networks (GRNNs) method together with three process-based ET algorithms. We found that the SVM method was superior to all other methods we evaluated. The validation results showed that compared with the individual algorithms, the SVM method driven by tower-specific (Modern Era Retrospective Analysis for Research and Applications, MERRA) meteorological data reduced the root mean square error (RMSE) by approximately 0.20 (0.15) mm/day for most forest sites and 0.30 (0.20) mm/day for most crop and grass sites and improved the squared correlation coefficient (R2) by approximately 0.10 (0.08) (95% confidence) for most flux tower sites. The water balance of basins and the global terrestrial ET calculation analysis also demonstrated that the regional and global estimates of the SVM-merged ET were reliable. The SVM method provides a powerful tool for improving global ET estimation to characterize the long-term spatiotemporal variations of the global terrestrial water budget.
Mots-clés Agrovoc : climatologie, évapotranspiration, méthode statistique, modèle mathématique, atmosphère, cycle hydrologique, cycle du carbone, couverture du sol, couverture végétale, terre
Mots-clés complémentaires : Biosphère, Hydrosphère
Mots-clés libres : Terrestrial evapotranspiration, Machine learning methods, Bayesian model averaging method, Plant functional type
Classification Agris : P40 - Météorologie et climatologie
P01 - Conservation de la nature et ressources foncières
U10 - Informatique, mathématiques et statistiques
P33 - Chimie et physique du sol
Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive
Auteurs et affiliations
- Yao Yunjun, Beijing Normal University (CHN)
- Liang Shunlin, Beijing Normal University (CHN)
- Li Xianglan, Beijing Normal University (CHN)
- Chen Jiquan, MSU (USA)
- Liu Shaomin, Beijing Normal University (CHN)
- Zhang Xiaopeng, Beijing Normal University (CHN)
- Xiao Zhiqiang, Beijing Normal University (CHN)
- Fisher Joshua B., JPL (USA)
- Mu Qiaozhen, University of Montana (USA)
- Pan Ming, Princeton University (USA)
- Liu Meng, CAAS (CHN)
- Cheng Jie, Beijing Normal University (CHN)
- Jiang Bo, Beijing Normal University (CHN)
- Xie Xianhong, Beijing Normal University (CHN)
- Grünwald Thomas, Technische Universität Dresden (DEU)
- Bernhofer Christian, Technische Universität Dresden (DEU)
- Roupsard Olivier, CIRAD-PERSYST-UMR Eco&Sols (CRI) ORCID: 0000-0002-1319-142X
Source : Cirad-Agritrop (https://agritrop.cirad.fr/584597/)
[ Page générée et mise en cache le 2024-11-08 ]