Agritrop
Accueil

Google earth engine based three decadal landsat imagery analysis for mapping of mangrove forests and its surroundings in the trat province of Thailand

Pimple Uday, Simonetti Dario, Sitthi Asamaporn, Pungkul Sukan, Leadprathom Kumron, Skupek Henry, Som-ard Jaturong, Gond Valéry, Towprayoon Sirintornthep. 2018. Google earth engine based three decadal landsat imagery analysis for mapping of mangrove forests and its surroundings in the trat province of Thailand. Journal of Computer and Communications, 6 (1):e81443, 18 p.

Article de revue ; Article de recherche ; Article de revue à comité de lecture Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence CC0 1.0 Sans restriction de droits pour le monde entier.
Pimple-JCC-2018.pdf

Télécharger (1MB) | Prévisualisation

Résumé : Monitoring and understanding the changes in mangrove ecosystems and their surroundings are required to determine how mangrove ecosystems are constantly changing while influenced by anthropogenic, and natural drivers. Consistency in high spatial resolution (30 m) satellite and high performance computing facilities are limiting factors to the process, with storage and analysis requirements. With this, we present the Google Earth Engine (GEE) based approach for long term mapping of mangrove forests and their surroundings. In this study, we used a GEE based approach: 1) to create atmospheric contamination free data from 1987-2017 from different Landsat satellite imagery; and 2) evaluating the random forest classifier and post classification change detection method. The obtained overall accuracy for the years 1987 and 2017 was determined to be 0.87 and 0.96, followed by a Kappa coefficient 0.80 and 0.94. The change detection results revealed a significant decrease in the agricultural area, while there was an increase in mangrove forest, shrimp/fish farm, and bareland area. The results suggest that interconversion of land use and land cover is affecting the landscape dynamics within the study area.

Mots-clés Agrovoc : mangrove, télédétection, Landsat, cartographie de l'occupation du sol, couverture végétale, utilisation des terres, traitement des données, écosystème forestier, forêt, forêt tropicale humide

Mots-clés géographiques Agrovoc : Thaïlande

Mots-clés libres : Google earth engine, Landsat program, Random forest, Mangrove Forest, Land use, Land cover change

Classification Agris : K01 - Foresterie - Considérations générales
U30 - Méthodes de recherche
F40 - Écologie végétale

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Pimple Uday, KMUTT (THA) - auteur correspondant
  • Simonetti Dario, EC (ITA)
  • Sitthi Asamaporn, Srinakharinwirot University (THA)
  • Pungkul Sukan, Royal Forest Department (THA)
  • Leadprathom Kumron, Royal Forest Department (THA)
  • Skupek Henry, Suan Sunandha Rajabhat University (THA)
  • Som-ard Jaturong, Mahasarakham University (THA)
  • Gond Valéry, CIRAD-ES-UPR BSef (FRA) ORCID: 0000-0002-0080-3140
  • Towprayoon Sirintornthep, KMUTT (THA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/586555/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-01-29 ]