Piou Cyril, Gay Pierre-Emmanuel, Benahi Ahmed Salem, Babah Ebbe Mohamed Abdallahi Ould, Chihrane Jamal, Ghaout Saïd, Cissé Sory, Diakite Fakaba, Lazar Mohamed, Cressman Keith, Merlin Olivier, Escorihuela Maria-José. 2019. Soil moisture from remote sensing to forecast desert locust presence. Journal of Applied Ecology, 56 (4) : 966-975.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. PUB688.pdf Télécharger (1MB) | Demander une copie |
Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/AGVOW7
Quartile : Outlier, Sujet : BIODIVERSITY CONSERVATION / Quartile : Q1, Sujet : ECOLOGY
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Economie-gestion
Résumé : Preventive control of desert locusts is based on monitoring recession areas to detect outbreaks. Remote sensing has been increasingly used in the preventive control strategy. Soil moisture is a major ecological driver of desert locust populations but is still missing in the current imagery toolkit for preventive management. By means of statistical analyses, combining field observations of locust presence/absence and soil moisture estimates at 1 km resolution from a disaggregation algorithm, we assess the potential of soil moisture to help preventive management of desert locust. We observe that a soil moisture dynamics increase of above 0.09 cm3/cm3 for 20 days followed by a decrease of soil moisture may increase the chance to observe locusts 70 days later. We estimate the gains in early warning timing compared to using imagery from vegetation to be 3 weeks. We demonstrate that forecasting errors may be reduced by the combination of several types of indicators such as soil moisture and vegetation index in a common statistical model forecasting locust presence. Policy implications. Soil moisture estimates at 1 km resolution should be used to plan desert locust surveys in preventive management. When soil moisture increases in a dry area of potential habitat for the desert locust, field surveys should be conducted two months later to evaluate the need of further preventive actions. Remote sensing estimates of soil moisture could also be used for other applications of integrated pest management.
Mots-clés Agrovoc : Locusta migratoria, lutte anti-insecte, teneur en eau du sol, télédétection, imagerie par satellite, modèle de simulation
Mots-clés géographiques Agrovoc : Algérie, Maroc, Mauritanie, Mali
Mots-clés libres : Agricultural pest, Desert locust, Disaggregation algorithm, Pest management, Preventive management, Random forest, Satellite imagery, Soil moisture
Classification Agris : H10 - Ravageurs des plantes
P33 - Chimie et physique du sol
U30 - Méthodes de recherche
Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes
Auteurs et affiliations
- Piou Cyril, CIRAD-BIOS-UMR CBGP (FRA) ORCID: 0000-0002-9378-9404 - auteur correspondant
- Gay Pierre-Emmanuel, CIRAD-BIOS-UMR CBGP (FRA) ORCID: 0000-0003-1328-6063
- Benahi Ahmed Salem, CNLA (MRT)
- Babah Ebbe Mohamed Abdallahi Ould, CNLA (MRT)
- Chihrane Jamal, CNLA (MAR)
- Ghaout Saïd, CNLA (MAR)
- Cissé Sory, Centre National de Lutte contre le Criquet pèlerin (MLI)
- Diakite Fakaba, Centre National de Lutte contre le Criquet pèlerin (MLI)
- Lazar Mohamed, INPV (DZA)
- Cressman Keith, FAO (ITA)
- Merlin Olivier, CESBIO (FRA)
- Escorihuela Maria-José, isardSAT (ESP)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/591887/)
[ Page générée et mise en cache le 2024-12-18 ]