Betbeder Julie, Fieuzal Remy, Baup Frederic. 2016. Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (6) : 2540-2553.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Betbederetal_JSTARS_2016(1).pdf Télécharger (1MB) | Demander une copie |
Quartile : Q1, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q2, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q2, Sujet : GEOGRAPHY, PHYSICAL / Quartile : Q2, Sujet : REMOTE SENSING
Résumé : Crop monitoring at a fine scale and crop yield estimation are critical from an environmental perspective because they provide essential information to combine increased food production and sustainable management of agricultural landscapes. The aim of this article is to estimate soybean yield using an agro-meteorological model controlled by optical and/or synthetic aperture radar (SAR) multipolarized satellite images. Satellite and ground data were collected over seven working farms. Optical and SAR images were acquired by Formosat-2, Spot-4, Spot-5, and Radarsat-2 satellites during the soybean vegetation cycle. A vegetation index (NDVI) was derived from the optical images, and backscattering coefficients and polarimetric indicators were computed from full quad-pol Radarsat-2 images. An angular normalization of SAR data was performed to minimize the incidence angle effects on SAR signals by using the complementarities provided by SAR and optical data. The best results are obtained when the model is controlled by both the leaf area index (LAI) derived from the optical vegetation index modified triangular vegetation index (MTVI2) or from the SAR backscattering coefficient σ °VV (LAI MTVI2 or (LAI σ ° VV ) and the dry biomass (DB) derived from the SAR Pauli matrix T33 (DB T33 )(r2 > 0.83), demonstrating the complementary of optical and SAR data.
Mots-clés Agrovoc : soja, rendement des cultures, indice de végétation, agrométéorologie, modèle de simulation, imagerie par satellite, radar, télédétection, image spot, polarimétrie
Mots-clés géographiques Agrovoc : Midi-Pyrénées, France
Mots-clés libres : Agro-meteorological model, Dry biomass, Leaf area index, Multipolarization, Polarimetric indicators
Classification Agris : F01 - Culture des plantes
U30 - Méthodes de recherche
P40 - Météorologie et climatologie
Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive
Auteurs et affiliations
- Betbeder Julie, Université de Rennes 2 (FRA)
- Fieuzal Remy, CESBIO (FRA)
- Baup Frederic, CESBIO (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/595145/)
[ Page générée et mise en cache le 2024-11-03 ]