Agritrop
Accueil

Synthetic Aperture Radar (SAR) images improve habitat suitability models

Betbeder Julie, Laslier Marianne, Hubert-Moy Laurence, Burel Françoise, Baudry Jacques. 2017. Synthetic Aperture Radar (SAR) images improve habitat suitability models. Landscape Ecology, 32 : 1867-1879.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Betbeder2017_Article_SyntheticApertureRadarSARImage.pdf

Télécharger (1MB) | Demander une copie

Quartile : Q1, Sujet : GEOSCIENCES, MULTIDISCIPLINARY / Quartile : Q1, Sujet : GEOGRAPHY, PHYSICAL / Quartile : Q1, Sujet : ECOLOGY

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Résumé : Context: The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors. Objectives: The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs). Methods: We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model. Results: We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species. Conclusions: Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.

Mots-clés Agrovoc : biodiversité, Carabidae, haie, couvert, imagerie par satellite, télédétection, Radar à synthèse d'ouverture, écologie forestière

Mots-clés géographiques Agrovoc : Bretagne, France

Mots-clés libres : Biodiversity, Remote sensing, TerraSAR-X, Hedgerow networks, Landscape connectivity

Classification Agris : P01 - Conservation de la nature et ressources foncières
U30 - Méthodes de recherche
K01 - Foresterie - Considérations générales

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Betbeder Julie, Université de Rennes 2 (FRA) - auteur correspondant
  • Laslier Marianne, Université de Rennes 2 (FRA)
  • Hubert-Moy Laurence, Université de Rennes 2 (FRA)
  • Burel Françoise, CNRS (FRA)
  • Baudry Jacques, INRA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/595148/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]