Cuéllar Ana Carolina, Kjaer Lene Jung, Baum Andreas, Stockmarr Anders, Skovgard Henrik, Nielsen Soren Achim, Andersson Mats Gunnar, Lindstrom Anders, Chirico Jan, Lühken Renke, Steinke Sonja, Kiel Ellen, Gethmann Jörn M., Conraths Franz J., Larska Magdalena, Smreczak Marcin, Orlowska Anna, Hammes Inger, Sviland Stale, Hopp Petter, Brugger Katharina, Rubel Franz, Balenghien Thomas, Garros Claire, Rakotoarivony Ignace, Allene Xavier, Lhoir Jonathan, Chavernac David, Delecolle Delphine, Mathieu Bruno, Delecolle Delphine, Setier Rio Marie-Laure, Scheid Bethsabée, Miranda Chueca Miguel Ángel, Barcelo Carlos, Lucientes Javier, Estrada Rosa, Mathis Alexander, Venail Roger, Tack Wesley, Bodker René. 2020. Modelling the monthly abundance of Culicoides biting midges in nine European countries using Random Forests machine learning. Parasites and Vectors, 13:194, 18 p.
|
Version publiée
- Anglais
Sous licence . Cuellar et al P&V 2020.pdf Télécharger (16MB) | Prévisualisation |
Quartile : Q1, Sujet : PARASITOLOGY / Quartile : Q1, Sujet : TROPICAL MEDICINE
Résumé : Background: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. Methods: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. Results: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. Conclusions: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.
Mots-clés Agrovoc : Culicoides, transmission des maladies, virus bluetongue, virus peste équine africaine, système d'aide à la décision, apprentissage machine, technique de prévision, distribution des populations, modèle mathématique
Mots-clés géographiques Agrovoc : France, Espagne, Allemagne, Suisse, Autriche, Pologne, Danemark, Suède, Norvège
Mots-clés complémentaires : Schmallenberg virus
Mots-clés libres : Culicoides abundance, Random Forest machine learning, Spatial predictions, Europe, Environmental variables, Culicoides seasonality
Classification Agris : U10 - Informatique, mathématiques et statistiques
L72 - Organismes nuisibles des animaux
L73 - Maladies des animaux
Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes
Auteurs et affiliations
- Cuéllar Ana Carolina, NVI (DNK) - auteur correspondant
- Kjaer Lene Jung, Technical University of Denmark (DNK)
- Baum Andreas, Technical University of Denmark (DNK)
- Stockmarr Anders, Technical University of Denmark (DNK)
- Skovgard Henrik, AU (DNK)
- Nielsen Soren Achim, Roskilde University (DNK)
- Andersson Mats Gunnar, National Veterinary Institute (SWE)
- Lindstrom Anders, National Veterinary Institute (SWE)
- Chirico Jan, National Veterinary Institute (SWE)
- Lühken Renke, Bernhard Nocht Institut fuer Schiffs und Tropenkrankheiten (DEU)
- Steinke Sonja, Carl von Ossietzky University of Oldenburg (DEU)
- Kiel Ellen, Carl von Ossietzky University of Oldenburg (DEU)
- Gethmann Jörn M., FLI (DEU)
- Conraths Franz J., FLI (DEU)
- Larska Magdalena, National Veterinary Research Institute (POL)
- Smreczak Marcin, National Veterinary Research Institute (POL)
- Orlowska Anna, National Veterinary Research Institute (POL)
- Hammes Inger, Norwegian Veterinary Institute (NOR)
- Sviland Stale, Norwegian Veterinary Institute (NOR)
- Hopp Petter, Norwegian Veterinary Institute (NOR)
- Brugger Katharina, Institute for Veterinary Public Health (AUT)
- Rubel Franz, Institute for Veterinary Public Health (AUT)
- Balenghien Thomas, CIRAD-BIOS-UMR ASTRE (MAR) ORCID: 0009-0008-4495-4814
- Garros Claire, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0003-4378-5031
- Rakotoarivony Ignace, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0009-0002-3480-6734
- Allene Xavier, CIRAD-BIOS-UMR ASTRE (FRA)
- Lhoir Jonathan
- Chavernac David, CIRAD-BIOS-UMR ASTRE (FRA)
- Delecolle Delphine, Université de Strasbourg (FRA)
- Mathieu Bruno, Université de Strasbourg (FRA)
- Delecolle Delphine, Université de Strasbourg (FRA)
- Setier Rio Marie-Laure, EID (FRA)
- Scheid Bethsabée, EID (FRA)
- Miranda Chueca Miguel Ángel, UIB (ESP)
- Barcelo Carlos, UIB (ESP)
- Lucientes Javier, Universidad de Zaragoza (ESP)
- Estrada Rosa, University of Zaragoza (ESP)
- Mathis Alexander, UZH (CHE)
- Venail Roger, Avia-GIS (BEL)
- Tack Wesley, Botanic Garden Meise (BEL)
- Bodker René, NVI (DNK)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/595539/)
[ Page générée et mise en cache le 2025-01-13 ]