Valentin Sarah, Mercier Alizé, Lancelot Renaud, Roche Mathieu, Arsevska Elena. 2021. Monitoring online media reports for early detection of unknown diseases: Insight from a retrospective study of COVID-19 emergence. Transboundary and Emerging Diseases, 68 (3) : 981-986.
|
Version Online first
- Anglais
Sous licence . tbed.13738.pdf Télécharger (804kB) | Prévisualisation |
|
|
Version publiée
- Anglais
Sous licence . 596299.pdf Télécharger (767kB) | Prévisualisation |
Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/MSLEFC
Quartile : Q1, Sujet : VETERINARY SCIENCES / Quartile : Q2, Sujet : INFECTIOUS DISEASES
Note générale : Ce travail soutenu par les projets MOOD (H2020 - No. 874850), SONGES (FEDER & Occitanie), #DigiTag (ANR‐16‐CONV‐0004) est un prolongement de la communication réalisée dans le cadre du Symposium AgriNumA 2019 (Dakar, Sénégal).
Résumé : Event‐based surveillance (EBS) systems monitor a broad range of information sources to detect early signals of disease emergence, including new and unknown diseases. In December 2019, a newly identified coronavirus emerged in Wuhan (China), causing a global coronavirus disease (COVID‐19) pandemic. A retrospective study was conducted to evaluate the capacity of three event‐based surveillance (EBS) systems (ProMED, HealthMap and PADI‐web) to detect early COVID‐19 emergence signals. We focused on changes in online news vocabulary over the period before/after the identification of COVID‐19, while also assessing its contagiousness and pandemic potential. ProMED was the timeliest EBS, detecting signals one day before the official notification. At this early stage, the specific vocabulary used was related to 'pneumonia symptoms' and 'mystery illness'. Once COVID‐19 was identified, the vocabulary changed to virus family and specific COVID‐19 acronyms. Our results suggest that the three EBS systems are complementary regarding data sources, and all require timeliness improvements. EBS methods should be adapted to the different stages of disease emergence to enhance early detection of future unknown disease outbreaks.
Mots-clés Agrovoc : Orthocoronavirinae, fouille de données, vocabulaire, logiciel, système d'information, efficacité, intelligence artificielle, surveillance épidémiologique, virose, covid-19, pandémie, fouille de textes
Mots-clés complémentaires : Intelligence épidémiologique, Système événementiel (eng EBS)
Mots-clés libres : Epidemic intelligence, Text Mining, COVID-19, One Health, Online news, PADI‐web
Classification Agris : S50 - Santé humaine
U30 - Méthodes de recherche
Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes
Agences de financement européennes : European Commission
Programme de financement européen : H2020
Projets sur financement : (EU) MOnitoring Outbreak events for Disease surveillance in a data science context
Auteurs et affiliations
- Valentin Sarah, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0002-9028-681X
- Mercier Alizé, CIRAD-BIOS-UMR ASTRE (FRA)
- Lancelot Renaud, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0002-5826-5242
- Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
- Arsevska Elena, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0002-6693-2316 - auteur correspondant
Source : Cirad-Agritrop (https://agritrop.cirad.fr/596299/)
[ Page générée et mise en cache le 2025-01-18 ]