Pavageau Charlotte, Gaucherel Cédric, Garcia Claude, Ghazoul Jaboury. 2018. Nesting sites of giant honeybees modulated by landscape patterns. Journal of Applied Ecology, 55 (3) : 1230-1240.
|
Version publiée
- Anglais
Sous licence . 597736.pdf Télécharger (1MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://doi.org/10.5061/dryad.132g8
Quartile : Q1, Sujet : ECOLOGY / Quartile : Outlier, Sujet : BIODIVERSITY CONSERVATION
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Economie-gestion
Résumé : The composition of agro-ecological landscapes is thought to have important implications for the production of major crops through its effects on pollinator abundance and behaviour. We explored the roles of land cover and land cover heterogeneity on bee nest distribution for the giant honeybee Apis dorsata, a key species for coffee pollination, in a complex agroforest landscape. We emphasized scaling and non-uniform effects by combining two different approaches of spatial analysis, the point-pattern analysis and surface-pattern analysis. We found non-exclusive, positive effects of agroforests, forest fragments and land-cover heterogeneity on the presence and number of nests. The distribution of nests responded to habitat heterogeneity at small scale (<100 m), forest fragments at medium scale (<300 m) and to agroforest at larger scales (500 m to 2 km). Our multiple approaches highlight that the landscape effects were neither linear nor uniform within the study zone. Nests were consistently located in areas of medium agroforest density or medium to high forest density, but were absent where forest fragments are the most concentrated. The agroforest matrix was particularly important in shaping the size of nest aggregates. Nests tended to be few when there is low tree cover at broad scale, while nests were numerous when agroforest patches are abundant within the bees' foraging range. Synthesis and applications. Our study revealed that structurally complex landscapes appear to support bee populations. The spatial arrangement of different land covers affected honeybee nest distributions by providing nesting and foraging resources across multiple scales. The results suggest that continued intensification of small forest fragments and expansion of large monospecies plantations will be deleterious to the populations of giant honeybees A. dorsata. Fragmentation of the agroforestry matrix at small scales (100s m) does not, however, appear detrimental for A. dorsata as long as sufficient diversified resources are available at the landscape scale (kms).
Mots-clés Agrovoc : agroforesterie, Apis dorsata, nidification, paysage, distribution des populations, pollinisateur, habitat, paysage agricole, écologie animale
Mots-clés géographiques Agrovoc : Inde
Mots-clés libres : Agro-ecological landscapes, Agroforestry, Apis dorsata, Honeybee, Landscape analysis, Nesting, Pollination, Spatial scale, Western Ghats, Wild bees
Classification Agris : L20 - Écologie animale
L60 - Taxonomie et géographie animales
Champ stratégique Cirad : Axe 2 (2014-2018) - Valorisation de la biomasse
Agences de financement européennes : European Commission
Programme de financement européen : FP7
Projets sur financement : (EU) IDP Bridging Plant Science and Policy
Auteurs et affiliations
- Pavageau Charlotte, ETH (CHE) - auteur correspondant
- Gaucherel Cédric, INRA (FRA)
- Garcia Claude, CIRAD-ES-UPR BSef (CHE) ORCID: 0000-0002-7351-0226
- Ghazoul Jaboury, ETH (CHE)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/597736/)
[ Page générée et mise en cache le 2025-01-15 ]