Ezanno Pauline, Picault Sébastien, Beaunée Gaël, Bailly Xavier, Munoz Facundo, Duboz Raphaël, Monod Hervé, Guégan Jean-François. 2021. Research perspectives on animal health in the era of artificial intelligence. Veterinary Research, 52:40, 15 p.
|
Version publiée
- Anglais
Sous licence . Ezanno et al. - 2021 - Research perspectives on animal health in the era .pdf Télécharger (1MB) | Prévisualisation |
Quartile : Q1, Sujet : VETERINARY SCIENCES
Résumé : Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009–2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.
Mots-clés Agrovoc : maladie des animaux, santé animale, intelligence artificielle, modélisation, système d'aide à la décision, épidémiologie
Mots-clés libres : Artificial intelligence, Animal health, Animal diseases, Modelling, Decision support system
Classification Agris : L73 - Maladies des animaux
Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes
Agences de financement européennes : European Commission
Programme de financement européen : H2020
Projets sur financement : (EU) MOnitoring Outbreak events for Disease surveillance in a data science context
Auteurs et affiliations
- Ezanno Pauline, INRAE (FRA) - auteur correspondant
- Picault Sébastien, INRAE (FRA)
- Beaunée Gaël, INRAE (FRA)
- Bailly Xavier, INRAE (FRA)
- Munoz Facundo, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0002-5061-4241
- Duboz Raphaël, CIRAD-BIOS-UMR ASTRE (SEN) ORCID: 0000-0002-2853-6195
- Monod Hervé, INRAE (FRA)
- Guégan Jean-François, INRAE (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/597870/)
[ Page générée et mise en cache le 2025-01-14 ]