Agritrop
Accueil

Research perspectives on animal health in the era of artificial intelligence

Ezanno Pauline, Picault Sébastien, Beaunée Gaël, Bailly Xavier, Munoz Facundo, Duboz Raphaël, Monod Hervé, Guégan Jean-François. 2021. Research perspectives on animal health in the era of artificial intelligence. Veterinary Research, 52:40, 15 p.

Article de revue ; Article de synthèse ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Ezanno et al. - 2021 - Research perspectives on animal health in the era .pdf

Télécharger (1MB) | Prévisualisation

Quartile : Q1, Sujet : VETERINARY SCIENCES

Résumé : Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009–2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.

Mots-clés Agrovoc : maladie des animaux, santé animale, intelligence artificielle, modélisation, système d'aide à la décision, épidémiologie

Mots-clés libres : Artificial intelligence, Animal health, Animal diseases, Modelling, Decision support system

Classification Agris : L73 - Maladies des animaux

Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes

Agences de financement européennes : European Commission

Programme de financement européen : H2020

Projets sur financement : (EU) MOnitoring Outbreak events for Disease surveillance in a data science context

Auteurs et affiliations

  • Ezanno Pauline, INRAE (FRA) - auteur correspondant
  • Picault Sébastien, INRAE (FRA)
  • Beaunée Gaël, INRAE (FRA)
  • Bailly Xavier, INRAE (FRA)
  • Munoz Facundo, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0002-5061-4241
  • Duboz Raphaël, CIRAD-BIOS-UMR ASTRE (SEN) ORCID: 0000-0002-2853-6195
  • Monod Hervé, INRAE (FRA)
  • Guégan Jean-François, INRAE (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/597870/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-01-14 ]