Agritrop
Accueil

Reinforcement learning for crop management support: Review, prospects and challenges

Gautron Romain, Maillard Odalric-Ambrym, Preux Philippe, Corbeels Marc, Sabbadin Régis. 2022. Reinforcement learning for crop management support: Review, prospects and challenges. Computers and Electronics in Agriculture, 200:107182, 14 p.

Article de revue ; Article de synthèse ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
1-s2.0-S0168169922004999-main.pdf

Télécharger (1MB) | Demander une copie

Résumé : Reinforcement learning (RL), including multi-armed bandits, is a branch of machine learning that deals with the problem of sequential decision-making in uncertain and unknown environments through learning by practice. While best known for being the core of the artificial intelligence (AI) world's best Go game player, RL has a vast range of potential applications. RL may help to address some of the criticisms leveled against crop management decision support systems (DSS): it is an interactive, geared towards action, contextual tool to evaluate series of crop operations faced with uncertainties. A review of RL use for crop management DSS reveals a limited number of contributions. We profile key prospects for a human-centered, real-world, interactive RL-based system to face tomorrow's agricultural decisions, and theoretical and ongoing practical challenges that may explain its current low uptake. We argue that a joint research effort from the RL and agronomy communities is necessary to explore RL's full potential.

Mots-clés Agrovoc : intelligence artificielle, apprentissage machine, aide à la décision, incertitude statistique, analyse du risque, système d'aide à la décision

Mots-clés complémentaires : Algorithme

Mots-clés libres : Reinforcement Learning, Decision support systems, Artifical intelligence, Risk awareness, Bandit algorithms, Uncertainty

Classification Agris : U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : CTS 7 (2019-) - Hors champs stratégiques

Auteurs et affiliations

  • Gautron Romain, CIRAD-PERSYST-UPR AIDA (COL) - auteur correspondant
  • Maillard Odalric-Ambrym, INRIA (FRA)
  • Preux Philippe, INRIA (FRA)
  • Corbeels Marc, CIRAD-PERSYST-UPR AIDA (KEN) ORCID: 0000-0002-8084-9287
  • Sabbadin Régis, INRAE (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/601655/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]