Gautron Romain, Maillard Odalric-Ambrym, Preux Philippe, Corbeels Marc, Sabbadin Régis. 2022. Reinforcement learning for crop management support: Review, prospects and challenges. Computers and Electronics in Agriculture, 200:107182, 14 p.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 1-s2.0-S0168169922004999-main.pdf Télécharger (1MB) | Demander une copie |
Résumé : Reinforcement learning (RL), including multi-armed bandits, is a branch of machine learning that deals with the problem of sequential decision-making in uncertain and unknown environments through learning by practice. While best known for being the core of the artificial intelligence (AI) world's best Go game player, RL has a vast range of potential applications. RL may help to address some of the criticisms leveled against crop management decision support systems (DSS): it is an interactive, geared towards action, contextual tool to evaluate series of crop operations faced with uncertainties. A review of RL use for crop management DSS reveals a limited number of contributions. We profile key prospects for a human-centered, real-world, interactive RL-based system to face tomorrow's agricultural decisions, and theoretical and ongoing practical challenges that may explain its current low uptake. We argue that a joint research effort from the RL and agronomy communities is necessary to explore RL's full potential.
Mots-clés Agrovoc : intelligence artificielle, apprentissage machine, aide à la décision, incertitude statistique, analyse du risque, système d'aide à la décision
Mots-clés complémentaires : Algorithme
Mots-clés libres : Reinforcement Learning, Decision support systems, Artifical intelligence, Risk awareness, Bandit algorithms, Uncertainty
Classification Agris : U10 - Informatique, mathématiques et statistiques
Champ stratégique Cirad : CTS 7 (2019-) - Hors champs stratégiques
Auteurs et affiliations
- Gautron Romain, CIRAD-PERSYST-UPR AIDA (COL) - auteur correspondant
- Maillard Odalric-Ambrym, INRIA (FRA)
- Preux Philippe, INRIA (FRA)
- Corbeels Marc, CIRAD-PERSYST-UPR AIDA (KEN) ORCID: 0000-0002-8084-9287
- Sabbadin Régis, INRAE (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/601655/)
[ Page générée et mise en cache le 2025-01-15 ]