Agritrop
Accueil

Automated landform classification and mapping using a combined textural-morphometric approach: The Congo basin and surroundings

Viennois Gaëlle, Bétard François, Freycon Vincent, Barbier Nicolas, Couteron Pierre. 2022. Automated landform classification and mapping using a combined textural-morphometric approach: The Congo basin and surroundings. Journal of Geomorphology, 1 (1) : 79-102.

Article de revue ; Article de recherche ; Article de revue à comité de lecture Revue en libre accès total
[img]
Prévisualisation
Version Online first - Anglais
Sous licence Licence Creative Commons.
Viennois et al. 2022 Journal Geomorphology.pdf

Télécharger (6MB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
603050.pdf

Télécharger (6MB) | Prévisualisation

Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/ZRFRGD

Résumé : An automatic method of landform mapping applicable to large continental areas is presented, based on 30-meter SRTM (Shuttle Radar Topography Mission) data and combining texture analysis using Fourier 2D periodograms (FOTO method) with a set of morphometric variables. This integrated strategy was applied to the whole Congo Basin and adjacent regions in Central Africa, where landscapes and landforms mapping remains heterogeneous and partial with existing expert maps differing in aims and scales. Through the FOTO method, a principal component analysis (PCA) on obtained Fourier r-spectra yielded six textural features, which were further combined with seven morphometric criteria into a global PCA. A k-means classification from these output results provided an automatic mapping of 12 landform classes (at a final resolution of 900 m) which were successfully interpreted in terms of geomorphological meaning together with some hydrological and soil attributes. Finally, comparison of our landform map with existing, independent geomorphological sheets revealed a good spatial congruence. Overall, our method proved effective to depict landform assemblages at regional or continental scales based on complementary textural information and morphometric parameters. As such, it could serve as a sound basis for further predicting and mapping soil units at the landscape scale, given the close soil-landform imbrications and interactions at the catena level. It could serve as well as a predictive variable for biodiversity measures and biomass estimates, especially in the humid tropics where environmental data are lacking whilst ecological modelling is urgently needed to support land planning and forest management.

Mots-clés Agrovoc : télédétection, cartographie, géomorphologie, hydrologie, radar, forêt tropicale, paysage, topographie, forêt tropicale humide, dynamique des populations

Mots-clés géographiques Agrovoc : Gabon, Afrique centrale, Cameroun, Congo, République démocratique du Congo

Mots-clés libres : Geomorphology, Mapping, SRTM, Congo Basin, Morphometry

Champ stratégique Cirad : CTS 5 (2019-) - Territoires

Auteurs et affiliations

  • Viennois Gaëlle, CNRS (FRA) - auteur correspondant
  • Bétard François, Université Sorbonne Paris Cité (FRA)
  • Freycon Vincent, CIRAD-ES-UPR Forêts et sociétés (FRA)
  • Barbier Nicolas, IRD (FRA)
  • Couteron Pierre, IRD (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/603050/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-01-29 ]