Pimple Uday, Simonetti Dario, Peters Ronny, Berger Uta, Podest Erika, Gond Valéry. 2023. Enhancing monitoring of mangrove spatiotemporal tree diversity and distribution patterns. Land Degradation and Development, 34 (5) : 1265-1282.
![]() |
Version Online first
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Land Degrad Dev - 2022 - Pimple - Enhancing monitoring of mangrove spatiotemporal tree diversity and distribution patterns.pdf Télécharger (3MB) | Demander une copie |
![]() |
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 603246.pdf Télécharger (3MB) | Demander une copie |
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture
Résumé : Spatiotemporal information on mangrove species assemblage of natural, disturbed, and rehabilitated is an essential prerequisite for effective strategies for biodiversity conservation and management. However, appropriate field-based sampling strategies of spatial heterogeneity still hamper the detection of the species distribution and its temporal development. An increasing amount of remote sensing data seems the perfect way to tackle these challenges. With this article, we fill this gap by presenting a review of the challenges and limitations to assess the current status of species diversity. We conclude that species discrimination based on remote sensing techniques is still limited by atmospheric contamination and tidal fluctuations. The lack of accurate information on the spatiotemporal development of species diversity and forest structure further curtails an understanding of functional indicators and the predictive power of modeling approaches. Nevertheless, multi-source remote-sensing techniques could seemingly capture the landscape heterogeneity and support systematic sampling designs. Spatially balanced (systematic) training and validation data are necessary to compile robust spatiotemporal information, supporting reliable predictions for optimizing restoration efforts. A systematic sampling of spatiotemporal ecological information is vital to derive the historical state of mangroves, detecting their degradation, and predicting future patterns of species distribution that are generally crucial for restoration, and particularly to rehabilitate species diversity.
Mots-clés Agrovoc : télédétection, biodiversité, distribution géographique, conservation des mangroves, impact sur l'environnement, écosystème forestier, distribution spatiale, forêt, surveillance de l'environnement, forêt tropicale humide, imagerie, réhabilitation des forêts, régénération naturelle
Mots-clés géographiques Agrovoc : Thaïlande, Cambodge
Mots-clés libres : Diversity prediction, Field inventories, Mangrove diversity, Sampling procedures, Tidal influence
Champ stratégique Cirad : CTS 1 (2019-) - Biodiversité
Agences de financement hors UE : Southeast Asia-Europe Joint Funding Scheme for Research and Innovation, Agence Nationale de la Recherche
Projets sur financement : (FRA) Monitoring and optimizing the design quality of mangrove restoration towards a sustainable coastal ecosystem management in Thailand and Mekong delta of Vietnam
Auteurs et affiliations
- Pimple Uday, KMUTT (THA) - auteur correspondant
- Simonetti Dario
- Peters Ronny, Technische Universität Dresden (DEU)
- Berger Uta, Technische Universität Dresden (DEU)
- Podest Erika, California Institute of Technology (USA)
-
Gond Valéry, CIRAD-ES-UPR Forêts et sociétés (FRA)
ORCID: 0000-0002-0080-3140
Source : Cirad-Agritrop (https://agritrop.cirad.fr/603246/)
[ Page générée et mise en cache le 2025-03-03 ]