Agritrop
Accueil

Dynamic and classifier-based model SARS-CoV-2 Omicron spillover risk assessment in China

Wei Hongjie, Zhao Yunkang, Qu Huimin, Wang Jing, Abudurusuli Guzainuer, Chen Qiuping, Zhao Zeyu, Song Wentao, Wang Yao, Frutos Roger, Chen Tianmu. 2023. Dynamic and classifier-based model SARS-CoV-2 Omicron spillover risk assessment in China. Fundamental Research, 10 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img]
Prévisualisation
Version post-print - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Omicron model.pdf

Télécharger (1MB) | Prévisualisation
[img]
Prévisualisation
Version Online first - Anglais
Sous licence Licence Creative Commons.
605329.pdf

Télécharger (4MB) | Prévisualisation

Résumé : The coronavirus disease 2019 (COVID-19) continues to have a huge impact on health care and economic systems around the world. The first question to ponder is to understand the flow of COVID-19 in the spatial and temporal dimensions. We collected 7 Omicron clusters outbreaks in China since the outbreak of COVID-19 as of August 2022, selected outbreak cases from different provinces and cities, and collected variable indicators that affect spillover outcomes, such as distance, migration index, PHSM index, daily reported cases number and so on. First, variables influencing spillover outcome events were assessed and analyzed retrospectively by constructing an infectious disease dynamics model and a classifier model, and secondly, the association between explanatory variables and spillover outcome events was constructed by fitting a logistics function. This study incorporates 7 influencing factors and classifies the spillover risk level into 3 levels. If different outbreak sites could be classified into different levels of spillover, it may reduce the pressure of epidemic prevention in some districts due to the lack of a uniform standard, which might be more conducive to achieving the goal of "dynamic zero".

Mots-clés Agrovoc : covid-19, modèle de simulation, facteur de risque, évaluation du risque, surveillance épidémiologique, épidémiologie, maladie infectieuse, transmission des maladies, analyse du risque, méthode statistique, coronavirus 2 du syndrome respiratoire aigu sévère, évaluation de l'impact, modèle mathématique

Mots-clés géographiques Agrovoc : Chine, Hainan

Mots-clés libres : SARS-CoV-2 Omicron, Spatial spillover risk, Dynamics model, A classifier model, Influencing factors

Agences de financement hors UE : National Key Research and Development Program of China, Fundamental Research Funds for Central Non-profit Scientific Institution

Auteurs et affiliations

  • Wei Hongjie, Xiamen University (CHN)
  • Zhao Yunkang, Xiamen University (CHN)
  • Qu Huimin, Xiamen University (CHN)
  • Wang Jing, Xiamen University (CHN)
  • Abudurusuli Guzainuer, Xiamen University (CHN)
  • Chen Qiuping, Xiamen University (CHN)
  • Zhao Zeyu, Xiamen University (CHN)
  • Song Wentao, Xiamen University (CHN)
  • Wang Yao, Xiamen University (CHN)
  • Frutos Roger, CIRAD-BIOS-UMR INTERTRYP (FRA) - auteur correspondant
  • Chen Tianmu, Xiamen University (CHN) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/605329/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-07 ]