Agritrop
Accueil

Mapping and monitoring peatland conditions from global to field scale

Minasny Budiman, Adetsu Diana Vigah, Aitkenhead Matt, Artz Rebekka R. E., Baggaley Nikki, Barthelmes Alexandra, Beucher Amélie, Caron Jean, Conchedda Giulia, Connolly John, Deragon Raphaël, Evans Chris, Fadnes Kjetil, Fiantis Dian, Gagkas Zisis, Gilet Louis, Gimona Alessandro, Glatzel Stephan, Greve Mogens H., Habib Wahaj, Hergoualc'H Kristell Anaïk, Hermansen Cecilie, Kidd Darren B., Koganti Triven, Kopansky Dianna, Large David J., Larmola Tuula, Lilly Allan, Liu Haojie, Marcus Matthew, Middleton Maarit, Morrison Keith, Petersen Rasmus Jes, Quaife Tristan, Rochefort Line, Rudiyanto, Toca Linda, Tubiello Francesco N., Weber Peter Lystbæk, Weldon Simon, Widyatmanti Wirastuti, Williamson Jenny, Zak Dominik. 2024. Mapping and monitoring peatland conditions from global to field scale. Biogeochemistry, 167 : 383-425.

Article de revue ; Article de synthèse ; Article de revue à facteur d'impact
[img]
Prévisualisation
Version Online first - Anglais
Sous licence Licence Creative Commons.
Misnany et al 23 Mapping and monitoring peatland conditions from global to field scale.pdf

Télécharger (4MB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
606686.pdf

Télécharger (4MB) | Prévisualisation

Résumé : Peatlands cover only 3–4% of the Earth's surface, but they store nearly 30% of global soil carbon stock. This significant carbon store is under threat as peatlands continue to be degraded at alarming rates around the world. It has prompted countries worldwide to establish regulations to conserve and reduce emissions from this carbon rich ecosystem. For example, the EU has implemented new rules that mandate sustainable management of peatlands, critical to reaching the goal of carbon neutrality by 2050. However, a lack of information on the extent and condition of peatlands has hindered the development of national policies and restoration efforts. This paper reviews the current state of knowledge on mapping and monitoring peatlands from field sites to the globe and identifies areas where further research is needed. It presents an overview of the different methodologies used to map peatlands in nine countries, which vary in definition of peat soil and peatland, mapping coverage, and mapping detail. Whereas mapping peatlands across the world with only one approach is hardly possible, the paper highlights the need for more consistent approaches within regions having comparable peatland types and climates to inform their protection and urgent restoration. The review further summarises various approaches used for monitoring peatland conditions and functions. These include monitoring at the plot scale for degree of humification and stoichiometric ratio, and proximal sensing such as gamma radiometrics and electromagnetic induction at the field to landscape scale for mapping peat thickness and identifying hotspots for greenhouse gas (GHG) emissions. Remote sensing techniques with passive and active sensors at regional to national scale can help in monitoring subsidence rate, water table, peat moisture, landslides, and GHG emissions. Although the use of water table depth as a proxy for interannual GHG emissions from peatlands has been well established, there is no single remote sensing method or data product yet that has been verified beyond local or regional scales. Broader land-use change and fire monitoring at a global scale may further assist national GHG inventory reporting. Monitoring of peatland conditions to evaluate the success of individual restoration schemes still requires field work to assess local proxies combined with remote sensing and modeling. Long-term monitoring is necessary to draw valid conclusions on revegetation outcomes and associated GHG emissions in rewetted peatlands, as their dynamics are not fully understood at the site level. Monitoring vegetation development and hydrology of restored peatlands is needed as a proxy to assess the return of water and changes in nutrient cycling and biodiversity.

Mots-clés Agrovoc : télédétection, tourbière, séquestration du carbone, cartographie, cycle du carbone, cartographie de l'utilisation des terres, restauration couverture végétale, biodiversité, réduction des émissions, hydrologie, déboisement, cycle hydrologique

Mots-clés géographiques Agrovoc : Norvège

Mots-clés libres : Climate change, Nature-based solutions, Greenhouse gas emission, Organic carbon, Organic soils

Classification Agris : P40 - Météorologie et climatologie
P33 - Chimie et physique du sol
P31 - Levés et cartographie des sols

Champ stratégique Cirad : CTS 6 (2019-) - Changement climatique

Auteurs et affiliations

  • Minasny Budiman, University of Sydney (AUS) - auteur correspondant
  • Adetsu Diana Vigah, AU (DNK)
  • Aitkenhead Matt, James Hutton Institute (GBR)
  • Artz Rebekka R. E., James Hutton Institute (GBR)
  • Baggaley Nikki, James Hutton Institute (GBR)
  • Barthelmes Alexandra, University of Greifswald (DEU)
  • Beucher Amélie, AU (DNK)
  • Caron Jean, Université Laval (CAN)
  • Conchedda Giulia, FAO (ITA)
  • Connolly John, Trinity College Dublin (IRL)
  • Deragon Raphaël, Université Laval (CAN)
  • Evans Chris, Centre for Ecology and Hydrology (GBR)
  • Fadnes Kjetil, NIBIO (NOR)
  • Fiantis Dian, Universitas Andalas (IDN)
  • Gagkas Zisis, James Hutton Institute (GBR)
  • Gilet Louis, Trinity College Dublin (IRL)
  • Gimona Alessandro, James Hutton Institute (GBR)
  • Glatzel Stephan, University of Vienna (AUT)
  • Greve Mogens H., AU (DNK)
  • Habib Wahaj, Trinity College Dublin (IRL)
  • Hergoualc'H Kristell Anaïk, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Hermansen Cecilie, AU (DNK)
  • Kidd Darren B., Department of Natural Resources and Environment Tasmania (AUS)
  • Koganti Triven, AU (DNK)
  • Kopansky Dianna, PNUE (KEN)
  • Large David J., University of Nottingham (GBR)
  • Larmola Tuula, Natural Resources Institute Finland (FIN)
  • Lilly Allan, James Hutton Institute (GBR)
  • Liu Haojie, University of Rostock (DEU)
  • Marcus Matthew, CIFOR (PER)
  • Middleton Maarit, Geological Survey of Finland GTK (FIN)
  • Morrison Keith, University of Reading (GBR)
  • Petersen Rasmus Jes, AU (DNK)
  • Quaife Tristan, University of Reading (GBR)
  • Rochefort Line, Université Laval (CAN)
  • Rudiyanto, Universiti Malaysia Terengganu (MYS)
  • Toca Linda, James Hutton Institute (GBR)
  • Tubiello Francesco N., FAO (ITA)
  • Weber Peter Lystbæk, AU (DNK)
  • Weldon Simon, Norwegian Institute for Bioeconomy Research (NOR)
  • Widyatmanti Wirastuti, UGM (IDN)
  • Williamson Jenny, Centre for Ecology and Hydrology (GBR)
  • Zak Dominik, AU (DNK)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/606686/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]