Ienco Dino, Gaetano Raffaele, Interdonato Roberto. 2023. A constrastive semi-supervised deep learning framework for land cover classification of satellite time series with limited labels. Neurocomputing, 567:127031, 11 p.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 1-s2.0-S0925231223011542-main.pdf Télécharger (2MB) | Demander une copie |
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie
Résumé : In this work, we present a new semi-supervised learning framework to cope with satellite image time series (SITS) classification in a data paucity scenario, considering extreme low levels of supervision. The proposed methodology, referred as SITS (Semi-Supervised Satellite Image Time Series classification method), is based on temporal convolutional neural networks and it takes advantage of both labelled and unlabelled information. SITS enforces the data to be projected in a discriminative manifold via contrastive learning, in order to produce a data representation where samples belonging to the same category are closer than the ones belonging to different ones. Pseudo-labelling is employed on unlabelled samples to take the most out of the available unlabelled information. Experiments on two study sites described by SITS of Sentinel-2 images highlight the quality of the proposed method with respect to common SITS-based classification methods and recent machine learning approaches especially tailored for the semi-supervised classification of multi-variate time series data.
Mots-clés Agrovoc : satellite d'observation de la Terre, apprentissage machine, classification, cartographie de l'occupation du sol, méthodologie, classification des terres, imagerie par satellite, réseau de neurones, couverture du sol
Mots-clés libres : Machine Learning, Deep Learning, Satellite Image Time Series, Land cover classification, Time series
Classification Agris : U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
Champ stratégique Cirad : CTS 5 (2019-) - Territoires
Auteurs et affiliations
- Ienco Dino, INRAE (FRA) - auteur correspondant
- Gaetano Raffaele, CIRAD-ES-UMR TETIS (FRA)
- Interdonato Roberto, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-0536-6277
Source : Cirad-Agritrop (https://agritrop.cirad.fr/607235/)
[ Page générée et mise en cache le 2024-12-07 ]