Agritrop
Accueil

Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions

Klinges David H., Baecher J. Alex, Lembrechts Jonas J., Maclean Ilya M. D., Lenoir Jonathan, Greiser Caroline, Ashcroft Michael B., Evans Luke J., Kearney Michael R., Aalto Juha, Barrio Isabel C., De Frenne Pieter, Guillemot Joannès, Hylander Kristoffer, Jucker Tommaso, Kopecký Martin, Luoto Miska, Macek Martin, Nijs Ivan, Urban Josef, van den Brink Liesbeth, Vangansbeke Pieter, Von Oppen Jonathan, Wild Jan, Boike Julia, Canessa Rafaella, Nosetto Marcelo, Rubtsov Alexey, Sallo-Bravo Jhonatan, Scheffers Brett R.. 2024. Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions. Global Ecology and Biogeography:e13884, 16 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version Online first - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Klinges_2024_GEB.pdf

Télécharger (5MB) | Demander une copie

Url - jeu de données - Entrepôt autre : https://doi.org/10.5281/zenodo.8110832 / Url - autres données associées : https://github.com/ilyamaclean/microclimf

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Résumé : Aim: The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data. Location: Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA). Time Period: 1960–2018. Major Taxa Studied: Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth. Methods: We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses. Results: For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20-fold, and temporal resolution 30-fold respectively. Main Conclusions: We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.

Mots-clés Agrovoc : changement climatique, écologie, biogéographie, dynamique des populations, données spatiales, séquestration du carbone, microclimat, facteur climatique, étude de cas, Salamandre, données climatiques, modèle mathématique, technique de prévision, distribution spatiale

Mots-clés géographiques Agrovoc : Alberta, Canada, Malaisie, Caroline du Nord, États-Unis d'Amérique

Mots-clés libres : Biophysical ecology, Climate Change, Ecophysiology, Macroclimate, Microclimate, Nonlinearity, Resolution, Species distribution model (SDM)

Classification Agris : U10 - Informatique, mathématiques et statistiques
F40 - Écologie végétale
L20 - Écologie animale
F70 - Taxonomie végétale et phytogéographie
L60 - Taxonomie et géographie animales

Champ stratégique Cirad : CTS 7 (2019-) - Hors champs stratégiques

Agences de financement européennes : European Research Council

Agences de financement hors UE : Agence Nationale de la Recherche, Swedish Research Council, Czech Science Foundation, Academy of Sciences of the Czech Republic, Academy of Finland, Biodiversa+, Forest-Web-3.0

Projets sur financement : (FRA) IMpacts des PRocessus mIcroclimatiques sur la redistributioN de la biodiversiTé forestière en contexte de réchauffement du macroclimat, (FRA) Impact de la gestion forestière et du changement climatique sur le microclimat en sous-bois, (EU) Microclimatic buffering of plant responses to macroclimate warming in temperate forests

Auteurs et affiliations

  • Klinges David H., University of Florida (USA) - auteur correspondant
  • Baecher J. Alex, University of Florida (USA)
  • Lembrechts Jonas J., University of Antwerp (BEL)
  • Maclean Ilya M. D., University of Exeter (GBR)
  • Lenoir Jonathan, UPJV (FRA)
  • Greiser Caroline, Stockholm University (SWE)
  • Ashcroft Michael B., University of Wollongong (AUS)
  • Evans Luke J., University of Florida (USA)
  • Kearney Michael R., University of Melbourne (AUS)
  • Aalto Juha, FMI (FIN)
  • Barrio Isabel C., Agricultural University of Iceland (ISL)
  • De Frenne Pieter, Ghent University (BEL)
  • Guillemot Joannès, CIRAD-PERSYST-UMR Eco&Sols (FRA) ORCID: 0000-0003-4385-7656
  • Hylander Kristoffer, Stockholm University (SWE)
  • Jucker Tommaso, University of Bristol (GBR)
  • Kopecký Martin, CZU (CZE)
  • Luoto Miska, University of Helsinki (FIN)
  • Macek Martin, Czech Academy of Sciences (CZE)
  • Nijs Ivan, University of Antwerp (BEL)
  • Urban Josef, Mendel University in Brno (CZE)
  • van den Brink Liesbeth, University of Tübingen (DEU)
  • Vangansbeke Pieter, Ghent University (BEL)
  • Von Oppen Jonathan, AU (DNK)
  • Wild Jan, Institute of Botany of the Czech Academy of Sciences (CZE)
  • Boike Julia, IME-MB (DEU)
  • Canessa Rafaella, University of Tübingen (DEU)
  • Nosetto Marcelo, Instituto de Matemática Aplicada San Luis (ARG)
  • Rubtsov Alexey, Siberian Federal University (RUS)
  • Sallo-Bravo Jhonatan, Universidad Nacional de San Antonio Abad del Cusco (PER)
  • Scheffers Brett R., University of Florida (USA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/609946/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-01-18 ]