Chen Mathilde, Guilpart Nicolas, Makowski David. 2024. Comparison of methods to aggregate climate data to predict crop yield: An application to soybean. Environmental Research Letters, 19 (5):054049, 18 p.
|
Version publiée
- Anglais
Sous licence . Chen_2024_Environ._Res._Lett._19_054049.pdf Télécharger (3MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://doi.pangaea.de/10.1594/PANGAEA.909132 / Url - jeu de données - Entrepôt autre : http://mapspam.info/ / Url - jeu de données - Entrepôt autre : https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview / Url - jeu de données - Entrepôt autre : https://www.amis-outlook.org/amis-about/calendars/soybeancal/en/ / Url - autres données associées : https://github.com/MathildeChen/SOYBEAN_PRED_COMP
Résumé : High-dimensional climate data collected on a daily, monthly, or seasonal time step are now commonly used to predict crop yields worldwide with standard statistical models or machine learning models. Since the use of all available individual climate variables generally leads to calculation problems, over-fitting, and over-parameterization, it is necessary to aggregate the climate data used as predictors. However, there is no consensus on the best way to perform this task, and little is known about the impacts of the type of aggregation method used and of the temporal resolution of weather data on model performances. Based on historical data from 1981 to 2016 of soybean yield and climate on 3447 sites worldwide, this study compares different temporal resolutions (daily, monthly, or seasonal) and dimension reduction techniques (principal component analysis (PCA), partial least square regression, and their functional counterparts) to aggregate climate data used as inputs of machine learning and linear regression (LR) models predicting yields. Results showed that random forest models outperformed and were less sensitive to climate aggregation methods than LRs when predicting soybean yields. With our models, the use of daily climate data did not improve predictive performance compared to monthly data. Models based on PCA or averages of monthly data showed better predictive performance compared to those relying on more sophisticated dimension reduction techniques. By highlighting the high sensitivity of projected impact of climate on crop yields to the temporal resolution and aggregation of climate input data, this study reveals that model performances can be improved by choosing the most appropriate time resolution and aggregation techniques. Practical recommendations are formulated in this article based on our results.
Mots-clés Agrovoc : rendement des cultures, prévision de rendement, modèle mathématique, données climatiques, modélisation des cultures, méthode statistique, modèle de simulation, changement climatique, technique de prévision, performance de culture, modélisation, évaluation de l'impact, soja
Mots-clés géographiques Agrovoc : Brésil, Argentine, Canada, Chine, Inde, Italie, États-Unis d'Amérique
Mots-clés libres : Agriculture, Soybean yield prediction, Climatic predictors, Dimensions reduction, Model comparison
Classification Agris : F01 - Culture des plantes
U10 - Informatique, mathématiques et statistiques
P40 - Météorologie et climatologie
Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques
Agences de financement hors UE : Agence Nationale de la Recherche
Projets sur financement : (FRA) CLAND : Changement climatique et usage des terres
Auteurs et affiliations
- Chen Mathilde, CIRAD-BIOS-UMR PHIM (FRA) ORCID: 0000-0002-5982-2143 - auteur correspondant
- Guilpart Nicolas, AgroParisTech (FRA)
- Makowski David, AgroParisTech (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/610078/)
[ Page générée et mise en cache le 2025-01-05 ]