Agritrop
Accueil

Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning

Vallet Ameline, Dupuy Stéphane, Verlynde Matthieu, Gaetano Raffaele. 2024. Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning. Scientific Data, 11:915, 14 p.

Article de revue ; Data paper ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Vallet2024.pdf

Télécharger (3MB) | Prévisualisation

Url - jeu de données - Entrepôt autre : https://doi.org/10.57745/DDP1ZR / Url - jeu de données - Entrepôt autre : https://gitlab.irstea.fr/raffaele.gaetano/moringa.git / Url - autres données associées : https://gitlab.irstea.fr/raffaele.gaetano/obiatools

Résumé : Land Use and Land Cover (LULC) maps are important tools for environmental planning and social-ecological modeling, as they provide critical information for evaluating risks, managing natural resources, and facilitating effective decision-making. This study aimed to generate a very high spatial resolution (0.5 m) and detailed (21 classes) LULC map for the greater Mariño watershed (Peru) in 2019, using the MORINGA processing chain. This new method for LULC mapping consisted in a supervised object-based LULC classification, using the random forest algorithm along with multi-sensor satellite imagery from which spectral and textural predictors were derived (a very high spatial resolution Pléiades image and a time serie of high spatial resolution Sentinel-2 images). The random forest classifier showed a very good performance and the LULC map was further improved through additional post-treatment steps that included cross-checking with external GIS data sources and manual correction using photointerpretation, resulting in a more accurate and reliable map. The final LULC provides new information for environmental management and monitoring in the greater Mariño watershed. With this study we contribute to the efforts to develop standardized and replicable methodologies for high-resolution and high-accuracy LULC mapping, which is crucial for informed decision-making and conservation strategies.

Mots-clés Agrovoc : gestion des ressources naturelles, télédétection, cartographie de l'occupation du sol, imagerie par satellite, système d'information géographique, utilisation des terres, apprentissage machine, séquestration du carbone, évaluation des ressources, cartographie de l'utilisation des terres, bassin versant, surveillance de l'environnement, impact sur l'environnement, cartographie

Mots-clés géographiques Agrovoc : Pérou

Mots-clés libres : Ecosystem ecology, Environmental sciences, Geography

Classification Agris : E11 - Économie et politique foncières
P31 - Levés et cartographie des sols
U30 - Méthodes de recherche

Champ stratégique Cirad : CTS 5 (2019-) - Territoires

Agences de financement hors UE : Institut de Convergence CLAND, Maison des Sciences de l'Homme Paris-Saclay

Auteurs et affiliations

  • Vallet Ameline, AgroParisTech (FRA) - auteur correspondant
  • Dupuy Stéphane, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-9710-5364
  • Verlynde Matthieu, Université Paris-Saclay (FRA)
  • Gaetano Raffaele, CIRAD-ES-UMR TETIS (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/610212/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-13 ]