Sambakhe Diariétou, Gozé Eric, Bacro Jean-Noël, Dingkuhn Michael, Adam Myriam, Ndiaye Malick, Muller Bertrand, Rouan Lauriane. 2024. Ideotype map research based on a crop model in the context of a climatic gradient. Ecological Modelling, 498:110840, 8 p.
|
Version publiée
- Anglais
Sous licence . Sambakhé2024_Article_IdeotypeMapResearch.pdf Télécharger (3MB) | Prévisualisation |
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Economie-gestion
Résumé : Due to increasing climate uncertainties, optimizing plant traits is essential for sustainable agriculture. This article presents an approach that combines advanced modelling techniques to identify optimal plant traits under various agro-environmental conditions. By integrating a crop model, a climate generator, and our PEQI algorithm (Profile Expected Quantile Improvement), our method aims to create ideotype maps tailored to specific regions. We use the SAMARA model (Simulator of crop trait Assembly, MAnagement Response, and Adaptation), calibrated with trials carried in Sahel on a set of local varieties, to simulate crop growth in diverse environments. The PEQI algorithm adjusts varietal parameters to maximize expected yield, defining precise selection objectives known as ideotypes, which are particularly important in regions with irregular rainfall patterns like the Sahel. With the PEQI algorithm based on a kriging metamodel, we ensure effective adaptation to spatially variable environments. By leveraging a climate generator to simulate meteorological variability, our integrated approach optimizes crop yields in regions such as Senegal, southern Mali, Burkina Faso, and Guinea-Bissau. The outcome is an ideotype map for sorghum, providing breeders with a robust decision-support tool to enhance crop performance amidst climate uncertainty.
Mots-clés Agrovoc : modèle de simulation, variété, rendement des cultures, modélisation des cultures, modèle mathématique, essai de variété, amélioration des plantes, changement climatique, idéotype
Mots-clés géographiques Agrovoc : Sahel, Guinée-Bissau, Sénégal, Mali, Afrique occidentale, Burkina Faso
Mots-clés libres : Experimentation, Crop model, Varietal parameters, Stochastic model, Conditional optimization, Noisy function, PEQI criterion
Auteurs et affiliations
- Sambakhe Diariétou, ISRA (SEN)
- Gozé Eric, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0001-9121-7835
- Bacro Jean-Noël, Université de Montpellier (FRA)
- Dingkuhn Michael, CIRAD-BIOS-UMR AGAP (FRA)
- Adam Myriam, CIRAD-BIOS-UMR AGAP (KHM) ORCID: 0000-0002-8873-6762
- Ndiaye Malick, ISRA (SEN)
- Muller Bertrand, CIRAD-BIOS-UMR AGAP (MDG)
- Rouan Lauriane, CIRAD-BIOS-UMR AGAP (FRA) - auteur correspondant
Source : Cirad-Agritrop (https://agritrop.cirad.fr/610354/)
[ Page générée et mise en cache le 2024-12-18 ]