Agritrop
Accueil

Multi-step kinetic mechanism coupled with CFD modeling of slow pyrolysis of biomass at different heating rates

Sangare Diakaridia, Moscosa-Santillan Mario, Bostyn Stéphane, Belandria Verónica, De la Cruz Martínez Alejandro, Van De Steene Laurent. 2024. Multi-step kinetic mechanism coupled with CFD modeling of slow pyrolysis of biomass at different heating rates. Chemical Engineering Journal, 479:147791, 14 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Sangare 2024.pdf

Télécharger (3MB) | Demander une copie

Résumé : This study employed numerical modeling to investigate the reactivity and kinetics involved in the slow pyrolysis of lignocellulosic biomass. The model integrates a biomass multi-step kinetics scheme with heat, momentum, and mass transfer, and it was based on the transport of species and flow in a porous medium approach. To develop the multi-step kinetics model, two samples of biomass, avocado stone (AS) with a high hemicellulose content and α-cellulose (CEL), were subjected to TGA experiments in an inert atmosphere. Furthermore, several experimental data in the literature on the evolution of slow pyrolysis products and data obtained by TGA experiments were considered to refine and validate the proposed kinetic mechanism. The temperature range, from 25 to 700 °C, was explored using different heating rates (10, 20, and 40 °C/min). Experimental results showed that CO and CO2 are the predominant gases during primary devolatilization, whereas H2 and CH4 result from secondary reactions at temperatures above 400 °C. The proposed mechanism involves computational fluid dynamic (CFD) simulations of laboratory-scale biomass pyrolysis, comparing temperature and species concentrations with experimental data. The predicted results for individual non-condensable gas mass yields showed an average relative error of below 6.90 % and 11.59 % for CEL and AS, respectively. In the case of biochar, the error was 6.41 % and 9.74 % for AS and CEL, respectively. The developed kinetic model can be applied to simulate the slow pyrolytic degradation of biomass based on its chemical composition.

Mots-clés Agrovoc : pyrolyse, modèle de simulation, composition chimique, biomasse, température, propriété physicochimique, dynamique des fluides

Mots-clés libres : Biomass, Pyrolysis, CFD modeling, Multi-step kinetic

Agences de financement hors UE : Consejo Nacional de Ciencia y Tecnología

Auteurs et affiliations

  • Sangare Diakaridia, CIRAD-PERSYST-UPR BioWooEB (FRA) ORCID: 0000-0002-6643-5512 - auteur correspondant
  • Moscosa-Santillan Mario, Universidad Autónoma de San Luis Potosí (MEX)
  • Bostyn Stéphane, CNRS (FRA)
  • Belandria Verónica, CNRS (FRA)
  • De la Cruz Martínez Alejandro, Universidad Autónoma de San Luis Potosí (MEX)
  • Van De Steene Laurent, CIRAD-PERSYST-UPR BioWooEB (FRA) ORCID: 0000-0003-4737-3667

Source : Cirad-Agritrop (https://agritrop.cirad.fr/610426/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]