Agritrop
Accueil

Design and performance of the Climate Change Initiative Biomass global retrieval algorithm

Santoro Maurizio, Cartus Olivier, Quegan Shaun, Kay Heather, Lucas Richard, Araza Arnan, Herold Martin, Labriere Nicolas, Chave Jérôme, Rosenqvist Ake, Tadono Takeo, Kobayashi Kazufumi, Kellndorfer Josef, Avitabile Valerio, Brown Hugh, Carreiras João M.B., Campbell Michael J., Cavlovic Jura, da Conceição Bispo Polyanna, Gilani Hammad, Latif Khan Mohammed, Kumar Amit, Lewis Simon L., Liang Jingjing, Mitchard Edward T.A., Pacheco-Pascagaza Ana Maria, Phillips Oliver L., Ryan Casey M., Saikia Purabi, Schepaschenko Dmitry, Sukhdeo Hansrajie, Verbeeck Hans, Vieilledent Ghislain, Wijaya Arief, Willcock Simon, Seifert Frank Martin. 2024. Design and performance of the Climate Change Initiative Biomass global retrieval algorithm. Science of Remote Sensing, 10:100169, 24 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Santoro2024-SRS.pdf

Télécharger (21MB) | Prévisualisation

Résumé : The increase in Earth observations from space in recent years supports improved quantification of carbon storage by terrestrial vegetation and fosters studies that relate satellite measurements to biomass retrieval algorithms. However, satellite observations are only indirectly related to the carbon stored by vegetation. While ground surveys provide biomass stock measurements to act as reference for training the models, they are sparsely distributed. Here, we addressed this problem by designing an algorithm that harnesses the interplay of satellite observations, modeling frameworks and field measurements, and generated global estimates of above-ground biomass (AGB) density that meet the requirements of the scientific community in terms of accuracy, spatial and temporal resolution. The design was adapted to the amount, type and spatial distribution of satellite data available around the year 2020. The retrieval algorithm estimated AGB annually by merging estimates derived from C- and L-band Synthetic Aperture Radar (SAR) backscatter observations with a Water Cloud type of model and does not rely on AGB reference data at the same spatial scale as the SAR data. This model is integrated with functions relating to forest structural variables that were trained on spaceborne LiDAR observations and sub-national AGB statistics. The yearly estimates of AGB were successively harmonized using a cost function that minimizes spurious fluctuations arising from the moderate-to-weak sensitivity of the SAR backscatter to AGB. The spatial distribution of the AGB estimates was correctly reproduced when the retrieval model was correctly set. Over-predictions occasionally occurred in the low AGB range (<50 Mg ha−1) and under-predictions in the high AGB range (>300 Mg ha−1). These errors were a consequence of sometimes too strong generalizations made within the modeling framework to allow reliable retrieval worldwide at the expense of accuracy. The precision of the estimates was mostly between 30% and 80% relative to the estimated value. While the framework is well founded, it could be improved by incorporating additional satellite observations that capture structural properties of vegetation (e.g., from SAR interferometry, low-frequency SAR, or high-resolution observations), a dense network of regularly monitored high-quality forest biomass reference sites, and spatially more detailed characterization of all model parameters estimates to better reflect regional differences.

Mots-clés Agrovoc : biomasse, satellite d'observation de la Terre, changement climatique, gaz à effet de serre, télédétection, Observation satellitaire, cartographie, inventaire forestier, cartographie des fonctions de la forêt, forêt, forêt tropicale

Mots-clés géographiques Agrovoc : Madagascar

Mots-clés libres : Above-ground biomass, Carbon, Forest, Synthetic aperture radar, Backscatter, LiDAR, Sentinel-1, ICESat GLAS, ICESat-2 ATLAS, Alos-2 Palsar-2, Retrieval

Classification Agris : P40 - Météorologie et climatologie
U30 - Méthodes de recherche

Champ stratégique Cirad : CTS 6 (2019-) - Changement climatique

Agences de financement hors UE : European Space Agency

Projets sur financement : (FRA) Climate Change Initiative BIOMASS

Auteurs et affiliations

  • Santoro Maurizio, Gamma Remote Sensing (CHE) - auteur correspondant
  • Cartus Olivier, Gamma Remote Sensing (CHE)
  • Quegan Shaun, University of Sheffield (GBR)
  • Kay Heather, Aberystwyth University (GBR)
  • Lucas Richard, Aberystwyth University (GBR)
  • Araza Arnan, Wageningen University and Research Centre (NLD)
  • Herold Martin, Helmholtz GFZ German Research Centre for Geosciences (DEU)
  • Labriere Nicolas, CNRS (FRA)
  • Chave Jérôme, CNRS (FRA)
  • Rosenqvist Ake, Earth Observation (JPN)
  • Tadono Takeo, Japan Aerospace Exploration Agency (JPN)
  • Kobayashi Kazufumi, Remote Sensing Technology Center of Japan (JPN)
  • Kellndorfer Josef, Earth Big Data (USA)
  • Avitabile Valerio, European Commission-Joint Research Centre (ITA)
  • Brown Hugh, University of Helsinki (FIN)
  • Carreiras João M.B., University of Sheffield (GBR)
  • Campbell Michael J., Utah State University (USA)
  • Cavlovic Jura, University of Zagreb (HRV)
  • da Conceição Bispo Polyanna, University of Manchester (GBR)
  • Gilani Hammad, New Mexico State University (USA)
  • Latif Khan Mohammed, Dr. Harisingh Gour University (IND)
  • Kumar Amit, Sikkim University (IND)
  • Lewis Simon L., University of Leeds (GBR)
  • Liang Jingjing, Purdue University (USA)
  • Mitchard Edward T.A., University of Edinburgh (GBR)
  • Pacheco-Pascagaza Ana Maria, University of Manchester (GBR)
  • Phillips Oliver L., University of Leeds (GBR)
  • Ryan Casey M., University of Edinburgh (GBR)
  • Saikia Purabi, Central University of Jharkhand (IND)
  • Schepaschenko Dmitry, IIASA (AUT)
  • Sukhdeo Hansrajie, Guyana Forestry Commission (GUF)
  • Verbeeck Hans, Ghent University (BEL)
  • Vieilledent Ghislain, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-1685-4997
  • Wijaya Arief, WRI (USA)
  • Willcock Simon, Bangor University (GBR)
  • Seifert Frank Martin, ESA (ITA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/610676/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-07 ]