Aussenac Raphaël, Monnet Jean-Matthieu, Klopcic Matija, Hawryło Pawel, Socha Jarosław, Mahnken Mats, Gutsch Martin, Cordonnier Thomas, Vallet Patrick. 2023. Diameter, height and species of 42 million trees in three European landscapes generated from field data and airborne laser scanning data [version 2; peer review: 2 approved]. Open Research Europe, 3:32, 37 p.
|
Version publiée
- Anglais
Sous licence . 1bbd111e-265e-4e17-8603-f3260eda9d07_15373_-_raphael_aussenac_v2.pdf Télécharger (4MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://zenodo.org/records/10204837
Résumé : Ecology and forestry sciences are using an increasing amount of data to address a wide variety of technical and research questions at the local, continental and global scales. However, one type of data remains rare: fine-grain descriptions of large landscapes. Yet, this type of data could help address the scaling issues in ecology and could prove useful for testing forest management strategies and accurately predicting the dynamics of ecosystem services. Here we present three datasets describing three large European landscapes in France, Poland and Slovenia down to the tree level. Tree diameter, height and species data were generated combining field data, vegetation maps and airborne laser scanning (ALS) data following an area-based approach. Together, these landscapes cover more than 100 000 ha and consist of more than 42 million trees of 51 different species. Alongside the data, we provide here a simple method to produce high-resolution descriptions of large landscapes using increasingly available data: inventory and ALS data. We carried out an in-depth evaluation of our workflow including, among other analyses, a leave-one-out cross validation. Overall, the landscapes we generated are in good agreement with the landscapes they aim to reproduce. In the most favourable conditions, the root mean square error (RMSE) of stand basal area (BA) and mean quadratic diameter (Dg) predictions were respectively 5.4 m2.ha-1 and 3.9 cm, and the generated main species corresponded to the observed main species in 76.2% of cases.
Mots-clés Agrovoc : télédétection, paysage, aménagement forestier, hauteur de l'arbre, Abies alba, cartographie, services écosystémiques, Fagus sylvatica, Picea abies, modèle de simulation, Quercus robur, écologie forestière, écosystème forestier, dendrométrie
Mots-clés géographiques Agrovoc : France, Alpes, Pologne, Slovénie
Mots-clés libres : Forest, Inventory, Landscape, Tree-level, Airborne laser scanning (ALS), Downscaling
Classification Agris : K01 - Foresterie - Considérations générales
U30 - Méthodes de recherche
Champ stratégique Cirad : CTS 5 (2019-) - Territoires
Agences de financement européennes : European Commission
Agences de financement hors UE : Académie de recherche et d'enseignement supérieur, Fachagentur Nachwachsende Rohstoffe
Programme de financement européen : H2020
Projets sur financement : (EU) ForestValue - Innovating forest-based bioeconomy, (FRA) I-Maestro, (FRA) PROTEST
Auteurs et affiliations
- Aussenac Raphaël, CIRAD-ES-UPR Forêts et sociétés (CIV) ORCID: 0000-0003-1191-4716 - auteur correspondant
- Monnet Jean-Matthieu, Université Grenoble Alpes (FRA)
- Klopcic Matija, University of Ljubljana (SVN)
- Hawryło Pawel, University of Agriculture in Krakow (POL)
- Socha Jarosław, University of Agriculture in Krakow (POL)
- Mahnken Mats, Potsdam Institute for Climate Impact Research (DEU)
- Gutsch Martin, Potsdam Institute for Climate Impact Research (DEU)
- Cordonnier Thomas, Université Grenoble Alpes (FRA)
- Vallet Patrick, Université Grenoble Alpes (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/610680/)
[ Page générée et mise en cache le 2024-11-02 ]