Agritrop
Accueil

Using features based on elongation to enhance sentiment analysis

Rafae Abderrahim, Erritali Mohammed, Madani Youness, Roche Mathieu. 2023. Using features based on elongation to enhance sentiment analysis. In : Information management and big data. Lossio-Ventura Juan Antonio (ed.), Valverde-Rebaza Jorge (ed.), Díaz Eduardo (ed.) , Alatrista-Salas Hugo (ed.). Cham : Springer, 70-81. (Communications in Computer and Information Science, 1837) ISBN 978-3-031-35444-1 Annual International Conference on Information Management and Big Dat (SIMBig 2022). 9, Lima, Pérou, 16 Novembre 2022/18 Novembre 2022.

Communication avec actes
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Rafae_et_al_SIMBIG2023.pdf

Télécharger (1MB) | Demander une copie

Résumé : Elongated words such as “heellloo” or “heyyy” are a frequent feature of oral communication and are often used to underline or exaggerate the hidden message of the root word. Although elongated words are rarely found in written languages and dictionaries, they are common in social networks. They can be considered in the analysis of users' sentiments. In this paper, we analyze the impact of elongation on the classification of sentiments, in addition to an in-depth study at the level of lexical forms of elongation. In this work we present a method to improve the accuracy of sentiment classification based on elongations of features. Experimental results conducted on Twitter data show that our model achieves an accuracy of 0.79 in 7-fold cross-validation experiments.

Mots-clés libres : Text Mining, Natural Language Processing, Data science, Sentiment analysis, Elongations, Textual features

Agences de financement européennes : European Commission

Projets sur financement : (EU) MOnitoring Outbreak events for Disease surveillance in a data science context

Auteurs et affiliations

  • Rafae Abderrahim, Sultan Moulay Slimane University (MAR)
  • Erritali Mohammed, Sultan Moulay Slimane University (MAR)
  • Madani Youness, Sultan Moulay Slimane University (MAR)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568

Source : Cirad-Agritrop (https://agritrop.cirad.fr/610865/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-04 ]