Agritrop
Accueil

A solid-solution model for Fe(II)-Fe(III)-Mg green rust "fougerite" : structural and geochemical constraints

Bourrié Guilhem, Trolard Fabienne, Refait Philippe, Feder Frédéric. 2002. A solid-solution model for Fe(II)-Fe(III)-Mg green rust "fougerite" : structural and geochemical constraints. In : World congress of soil science. Thailande-Ministry of Agriculture and Cooperatives-LDD, SFST, IUSS, FFTC, WASWC. Bangkok : WCSS, 1 Cd-Rom World Congress of Soil Science. 17, Bangkok, Thaïlande, 14 Août 2002/20 Août 2002.

Communication sans actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_511503.pdf

Télécharger (180kB) | Prévisualisation

Autre titre : Un modèle de solution solide pour les rouilles vertes de type Fe(II)-Fe(III)-Mg (fougérite) : contraintes structurales et géochimiques

Note générale : Symposium n° 28 ; Paper n° 1653 ; Presentation : oral

Résumé : Fe(II)-Fe(III) green rust identified in soil as a natural mineral, for which the name "fougerite" has been proposed, is responsible for the blue - green colour of gley horizons, and exerts the main control on Fe dynamics (Trolard et al., 1997; Bourrié et al., 1999). An EXAFS study of the structure of the mineral, using preparation techniques that avoid any contact with oxygen from the atmosphere (Refait et al., 2001), confirms that the mineral belongs to the group of Green Rusts, in which brucite-like layers alternate with interlayers of anions and water molecules. According to the rhomboedral R3m crystal structure, the Fe - Fe distance corresponds to the parameter a of the conventional hexagonal lattice, i.e. 0.31-0.32 nm. The second peak of the pseudo radial distribution fonction (PRDF) P2 peak is found at that distance, and the series of peaks is in accordance to the hexagonal array of successive neighbouring cations at aV3, 2a, aV7, 3a... However, the intensity of the P2 peak is much less intense in the mineral than in synthetic green rusts. The comparison with synthetic pyroaurites shows that this is due to a partial substitution of FeII by MgII in the brucite-like layer, which leads to the general formula of the mineral : [FeII (1-x)MgII yFeIII x (OH)2+2y]+x . [x/n An- . (1-x+y) H2O]-x, where An- is the intercalated anion, and where one water molecule is supposed intercalated over each Mg-occupied site as for Fe. From this finding, the regular solid solution model proposed previously (Génin et al., 2001) must be modified, with provision for Mg incorporation in the mineral. Accordingly, the Ionic Activity Products must be written for each of the three end-members: Mg(OH)2, Fe(OH)2 and Fe(OH)3, the pure end-members keeping the crystal structure of the green rust. Soil solutions from hydromorphic soils are used to check the model and to constrain the ranges of variation of the mole ratios x = FeIII/Fetotal and y = Mg/Fetotal .

Mots-clés Agrovoc : sol hydromorphe, oxydoréduction, fer, oxyde, cristallisation, minéralogie

Classification Agris : P33 - Chimie et physique du sol

Auteurs et affiliations

  • Bourrié Guilhem, INRA (FRA)
  • Trolard Fabienne, INRA (FRA)
  • Refait Philippe, Université de La Rochelle (FRA)
  • Feder Frédéric, CIRAD-CA-GEC (REU) ORCID: 0000-0001-8434-5193

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/511503/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-04-02 ]