Buchanan Serra-Willow, Sauvadet Marie, Isaac Marney E.. 2024. Decomposition of litter mixtures induces non-additive effects on soil priming across a riparian land use gradient. Soil Biology and Biochemistry, 190:109285, 8 p.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 607720.pdf Télécharger (2MB) | Demander une copie |
Résumé : While litter traits have been used for decades to predict decomposition rates through the Leaf Economics Spectrum (LES) acquisitive to conservative trait lens, litter trait and litter mixture effects on soil carbon (C) priming effects (PE) is less known. To assess whether the LES can predict soil C PE during the decomposition of litter mixtures from complex ecosystems, a 99-day incubation experiment was conducted. The experiment involved soil and leaf litter from three Canadian riparian land uses (grasslands, deciduous agroforests, and coniferous agroforests), incubated as single plant species, and as plant species mixtures in their natural proportions. Natural abundance δ13C-isotopic analysis was used to assess the proportion of CO2 derived from leaf litter versus soil C mineralization at initial (0–21 days, stage I) and later (22–99 days, stage II) stages of decomposition. Single species positions on the LES mirrored litter-C mineralization dynamics, yet PE emissions remained harder to predict with LES traits. Nonetheless, higher PE emissions relative to litter-C mineralization were observed with litter from LES species expressing conservative traits compared to LES species expressing acquisitive traits. Leaf litter mixtures from both agroforests, expressing high leaf litter trait functional dissimilarity, resulted in synergistic, non-additive effects on soil PE. These findings contribute to our understanding of the effects of leaf litter functional traits and trait mixing on soil PE, highlighting that mixed-species litter decomposition can lead to non-additive effects on soil C dynamics in forested riparian ecosystems.
Mots-clés Agrovoc : litière végétale, litière forestière, cycle du carbone, conservation des sols, dégradation, carbone organique du sol, utilisation des terres
Mots-clés géographiques Agrovoc : Canada
Mots-clés libres : 13C Natural abundance, Decomposition, Priming effect, Litter mixtures, Agroforestry, Leaf functional traits, C mineralization, Leaf economics spectrum
Classification Agris : P34 - Biologie du sol
P33 - Chimie et physique du sol
Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques
Agences de financement hors UE : Agriculture and Agri-Food Canada
Auteurs et affiliations
- Buchanan Serra-Willow, University of Toronto Scarborough (CAN)
- Sauvadet Marie, CIRAD-PERSYST-UMR Eco&Sols (FRA) ORCID: 0000-0002-7520-8565
- Isaac Marney E., University of Toronto Scarborough (CAN) - auteur correspondant
Source : Cirad-Agritrop (https://agritrop.cirad.fr/607720/)
[ Page générée et mise en cache le 2024-11-21 ]