Agritrop
Accueil

Towards a (semi-)automatic urban planning rule identification in the french language

Koptelov Maksim, Holveck Margaux, Crémilleux Bruno, Reynaud Justine, Roche Mathieu, Teisseire Maguelonne. 2023. Towards a (semi-)automatic urban planning rule identification in the french language. In : 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA 2023). IEEE. New York : IEEE, 396-405. ISBN 979-8-3503-4504-09 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 10, Thessaloniki, Grèce, 9 Octobre 2023/13 Octobre 2023.

Communication avec actes
[img] Version post-print - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
609246.pdf

Télécharger (966kB) | Demander une copie

Url - jeu de données - Entrepôt autre : https://doi.org/10.57745/DWYGMB

Résumé : ne of the objectives of the Hérelles project is to find new mechanisms to facilitate the labeling (or semantization) of clusters from time series of satellite images. To achieve this, a proposed solution is to associate textual elements of interest with satellite data. The first step in this process consists of an automatic extraction of the information in the form of rules from urban planning documents composed in the French language. To address this challenge, we propose a method which is based on the multi-label classification of textual segments. It includes a special format for representing segments, in which each segment has a title and a subtitle. In addition, we propose a cascade approach aiming to deal with hierarchy of class labels. Finally, we develop several text augmentation techniques for the texts in French, which are able to improve the prediction results. We demonstrate experimentally that the resulting framework correctly classifies each type of segment with more than 90% of accuracy.

Mots-clés libres : Data science, Natural Language Processing, Data augmentation, Data classifcation, Urban planning, French corpus

Agences de financement hors UE : Agence Nationale de la Recherche

Projets sur financement : (FRA) Hétérogénéité des données - Hétérogénéité des méthodes : un cadre collaboratif unifié pour l'analyse interactive de données temporelles

Auteurs et affiliations

  • Koptelov Maksim, UNICAEN (FRA)
  • Holveck Margaux, Université de Strasbourg (FRA)
  • Crémilleux Bruno, UNICAEN (FRA)
  • Reynaud Justine, UNICAEN (FRA)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
  • Teisseire Maguelonne, INRAE (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/609246/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-04-19 ]