Agritrop
Accueil

Exploring fine-scale urban landscapes using satellite data to predict the distribution of Aedes mosquito breeding sites

Teillet Claire, Devillers Rodolphe, Tran Annelise, Catry Thibault, Marti Renaud, Dessay Nadine, Rwagitinywa Joseph, Restrepo Johana, Roux Emmanuel. 2024. Exploring fine-scale urban landscapes using satellite data to predict the distribution of Aedes mosquito breeding sites. International Journal of Health Geographics, 23:18, 20 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
2024_Teillet_UrbanLandscapes_Satellite_Aedes.pdf

Télécharger (4MB) | Prévisualisation

Url - autres données associées : https://forge.ird.fr/espace-dev/personnels/teillet/aedes_breeding_sites_modelling.git

Résumé : Background: The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models. Methods: We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available. Results: Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available. Conclusion: This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.

Mots-clés Agrovoc : télédétection, Aedes aegypti, vecteur de maladie, paysage, imagerie par satellite, zone urbaine, environnement urbain, Aedes, méthode statistique, urbanisation, distribution spatiale, site de reproduction

Mots-clés géographiques Agrovoc : Guyane française, France

Mots-clés libres : Remote Sensing, Aedes aegypti, Urban areas, Prediction, Landscape ecology, Vector control, Arboviruses

Classification Agris : L72 - Organismes nuisibles des animaux

Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes

Agences de financement européennes : European Commission

Agences de financement hors UE : Centre National d'Etudes Spatiales, Conseil Régional Occitanie

Projets sur financement : (EU) INTERREG, (EU) Projet de coopération Régionale pour l'Observation des GuYanes par SATellite

Auteurs et affiliations

  • Teillet Claire, IRD (FRA) - auteur correspondant
  • Devillers Rodolphe, IRD (FRA)
  • Tran Annelise, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0001-5463-332X
  • Catry Thibault, IRD (FRA)
  • Marti Renaud, Université de Montpellier (FRA)
  • Dessay Nadine, IRD (FRA)
  • Rwagitinywa Joseph, Collectivité territoriale de Guyane (GUF)
  • Restrepo Johana, Collectivité territoriale de Guyane (GUF)
  • Roux Emmanuel, IRD (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/610084/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-21 ]